IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6534.html
   My bibliography  Save this paper

Is Market Fear Persistent? A Long-Memory Analysis

Author

Listed:
  • Guglielmo Maria Caporale
  • Luis Gil-Alana
  • Alex Plastun

Abstract

This paper investigates the degree of persistence of market fear. Specifically, two different long-memory approaches (R/S analysis with the Hurst exponent method and fractional integration) are used to analyse persistence of the VIX index over the sample period 2004-2016, as well as some sub-periods (pre-crisis, crisis and post-crisis). The findings indicate that its properties change over time: in normal periods it exhibits anti-persistence (there is a negative correlation between its past and future values), whilst during crisis period the level of persistence is increasing. These results can be informative about the nature of financial bubbles and anti-bubbles, and provide evidence on whether there exist market inefficiencies that could be exploited to make abnormal profits by designing appropriate trading strategies.

Suggested Citation

  • Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Is Market Fear Persistent? A Long-Memory Analysis," CESifo Working Paper Series 6534, CESifo Group Munich.
  • Handle: RePEc:ces:ceswps:_6534
    as

    Download full text from publisher

    File URL: http://www.cesifo-group.de/DocDL/cesifo1_wp6534.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    3. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    4. Sadique, Shibley & Silvapulle, Param, 2001. "Long-Term Memory in Stock Market Returns: International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 59-67, January.
    5. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    6. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    7. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
    8. Hui Guo & Robert F. Whitelaw, 2006. "Uncovering the Risk-Return Relation in the Stock Market," Journal of Finance, American Finance Association, vol. 61(3), pages 1433-1463, June.
    9. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    10. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    11. Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun & Inna Makarenko, 2016. "Long memory in the Ukrainian stock market and financial crises," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(2), pages 235-257, April.
    12. Donald B. Keim & Ananth Madhavan, 2000. "The Relation between Stock Market Movements and NYSE Seat Prices," Journal of Finance, American Finance Association, vol. 55(6), pages 2817-2840, December.
    13. Richard T. Baillie & Young‐Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long memory models for daily and high frequency commodity futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(7), pages 643-668, July.
    14. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2004. "Fractional cointegration and tests of present value models," Review of Financial Economics, Elsevier, vol. 13(3), pages 245-258.
    15. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    16. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    17. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    18. Ignacio N Lobato & Carlos Velasco, 2007. "Efficient Wald Tests for Fractional Unit Roots," Econometrica, Econometric Society, vol. 75(2), pages 575-589, March.
    19. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    20. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    21. Demetrescu, Matei & Kuzin, Vladimir & Hassler, Uwe, 2008. "Long Memory Testing In The Time Domain," Econometric Theory, Cambridge University Press, vol. 24(01), pages 176-215, February.
    22. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
    23. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    24. John Barkoulas & Walter C. Labys & Joseph Onochie, 1997. "Fractional dynamics in international commodity prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(2), pages 161-189, April.
    25. Mirko Abbritti & Luis A. Gil-Alana & Yuliya Lovcha & Antonio Moreno, 2016. "Term Structure Persistence," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(2), pages 331-352.
    26. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    27. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jijfss:v:6:y:2018:i:1:p:21-:d:131390 is not listed on IDEAS
    2. Guglielmo Maria Caporale & Luis Gil-Alana & Tommaso Trani, 2018. "Brexit and Uncertainty in Financial Markets," International Journal of Financial Studies, MDPI, Open Access Journal, vol. 6(1), pages 1-9, February.
    3. Vasilios Plakandaras & Rangan Gupta & Mark E. Wohar, 2018. "Persistence of Economic Uncertainty: A Comprehensive Analysis," Working Papers 201810, University of Pretoria, Department of Economics.

    More about this item

    Keywords

    market fear; VIX; persistence; long memory; R/S analysis; fractional integration;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6534. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe). General contact details of provider: http://edirc.repec.org/data/cesifde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.