IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Long range dependence in daily stock returns

  • Guglielmo Maria Caporale
  • Luis Gil-Alana

The tests of Robinson (Journal of the American Statistical Association, 89, 1420-37, 1994a) are used to analyse the degree of dependence in the intertemporal structure of daily stock returns (defined as the first difference of the logarithm of stock prices, where the series being considered is the S&P500 index). These tests have several distinguishing features compared with other procedures for testing for unit (or fractional) roots. In particular, they have a standard null limit distribution and they are the most efficient ones when carried out against the appropriate alternatives. In addition, they allow the incorporation of the Bloomfield (Biometrika, 60, 217-226, 1973) exponential spectral model for the underlying I(0) disturbances. The full sample, which comprises 17 000 observations, is first divided in 10 subsamples of 1700 observations each. These are then grouped two by two, and five by five; finally, the whole sample is considered. The results indicate that the degree of dependence remains relatively constant over time, with the order of integration of stock returns fluctuating slightly above or below zero. On the whole, there is very little evidence of fractional integration, despite the length of the series. Therefore, it appears that the standard practice of taking first differences when modelling stock returns might be adequate.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Financial Economics.

Volume (Year): 14 (2004)
Issue (Month): 6 ()
Pages: 375-383

in new window

Handle: RePEc:taf:apfiec:v:14:y:2004:i:6:p:375-383
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
  2. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 33-55, March.
  3. Granger, Clive W.J. & Hyung, Namwon, 1999. "Occasional Structural Breaks and Long Memory," University of California at San Diego, Economics Working Paper Series qt4d60t4jh, Department of Economics, UC San Diego.
  4. James M. Poterba & Lawrence H. Summers, 1987. "Mean Reversion in Stock Prices: Evidence and Implications," NBER Working Papers 2343, National Bureau of Economic Research, Inc.
  5. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
  6. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
  7. repec:cep:stiecm:/2000/391 is not listed on IDEAS
  8. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  9. Gil-Alana, Luis A., 2000. "Mean reversion in the real exchange rates," Economics Letters, Elsevier, vol. 69(3), pages 285-288, December.
  10. Rydén, Tobias & Teräsvirta, Timo & Åsbrink, Stefan, 1996. "Stylized Facts of Daily Return Series and the Hidden Markov Model," SSE/EFI Working Paper Series in Economics and Finance 117, Stockholm School of Economics.
  11. Granger, Clive W.J. & Teräsvirta, Timo, 1998. "A simple nonlinear time series model with misleading linear properties," SSE/EFI Working Paper Series in Economics and Finance 237, Stockholm School of Economics.
  12. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-87, August.
  13. Cioczek-Georges, R. & Mandelbrot, B. B., 1995. "A class of micropulses and antipersistent fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 1-18, November.
  14. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  15. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2002. "Fractional integration and mean reversion in stock prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 599-609.
  16. Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
  17. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:14:y:2004:i:6:p:375-383. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.