IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Generalised Autocovariance Function

  • Tommaso, Proietti
  • Alessandra, Luati

The generalised autocovariance function is defined for a stationary stochastic process as the inverse Fourier transform of the power transformation of the spectral density function. Depending on the value of the transformation parameter, this function nests the inverse and the traditional autocovariance functions. A frequency domain non-parametric estimator based on the power transformation of the pooled periodogram is considered and its asymptotic distribution is derived. The results are employed to construct classes of tests of the white noise hypothesis, for clustering and discrimination of stochastic processes and to introduce a novel feature matching estimator of the spectrum.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/43711/1/MPRA_paper_43711.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 43711.

as
in new window

Length:
Date of creation: 06 Jun 2012
Date of revision:
Handle: RePEc:pra:mprapa:43711
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Miguel A. Delgado & Javier Hidalgo & Carlos Velasco, 2005. "Distribution free goodness-of-fit tests for linear processes," LSE Research Online Documents on Economics 6840, London School of Economics and Political Science, LSE Library.
  2. Steven N. Durlauf, 1992. "Spectral Based Testing of the Martingale Hypothesis," NBER Technical Working Papers 0090, National Bureau of Economic Research, Inc.
  3. Alessandra Luati & Tommaso Proietti & Marco Reale, 2012. "The Variance Profile," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 607-621, June.
  4. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-64, July.
  5. Tieslau, Margie A. & Schmidt, Peter & Baillie, Richard T., 1996. "A minimum distance estimator for long-memory processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 249-264.
  6. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-47, July-Sept.
  7. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
  8. Ahmed El Ghini & Christian Francq, 2006. "Asymptotic Relative Efficiency of Goodness-Of-Fit Tests Based on Inverse and Ordinary Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 843-855, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43711. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.