IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/6840.html
   My bibliography  Save this paper

Distribution free goodness-of-fit tests for linear processes

Author

Listed:
  • Delgado, Miguel A.
  • Hidalgo, Javier
  • Velasco, Carlos

Abstract

This article proposes a class of goodness-of-fit tests for the autocorrelation function of a time series process, including those exhibiting long-range dependence. Test statistics for composite hypotheses are functionals of a (approximated) martingale transformation of the Bartlett’s Tp-process with estimated parameters, which converges in distribution to the standard Brownian Motion under the null hypothesis. We discuss tests of different nature such as omnibus, directional and Portmanteau-type tests. A Monte Carlo study illustrates the performance of the different tests in practice.

Suggested Citation

  • Delgado, Miguel A. & Hidalgo, Javier & Velasco, Carlos, 2005. "Distribution free goodness-of-fit tests for linear processes," LSE Research Online Documents on Economics 6840, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:6840
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/6840/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nikabadze, A. & Stute, W., 1997. "Model checks under random censorship," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 249-259, March.
    2. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, December.
    3. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    4. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    5. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    6. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    7. Efstathios Paparoditis, 2000. "Spectral Density Based Goodness‐of‐Fit Tests for Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 143-176, March.
    8. Winfried Stute & Li‐Xing Zhu, 2002. "Model Checks for Generalized Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 535-545, September.
    9. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series 424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hidalgo, J. & Kreiss, J.-P., 2006. "Bootstrap specification tests for linear covariance stationary processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 807-839, August.
    2. Javier Hidalgo, 2003. "A Bootstrap Causality Test for Covariance Stationary Processes," STICERD - Econometrics Paper Series 462, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Hidalgo, Javier, 2003. "An alternative bootstrap to moving blocks for time series regression models," Journal of Econometrics, Elsevier, vol. 117(2), pages 369-399, December.
    4. Hidalgo, Javier, 2003. "A bootstrap causality test for covariance stationary processes," LSE Research Online Documents on Economics 6848, London School of Economics and Political Science, LSE Library.
    5. repec:wyi:journl:002087 is not listed on IDEAS
    6. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    7. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    8. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    9. repec:hal:journl:peer-00815563 is not listed on IDEAS
    10. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    11. Giovanni Caggiano & Efrem Castelnuovo, 2008. "Long Memory and Non-Linearities in International Inflation," "Marco Fanno" Working Papers 0076, Dipartimento di Scienze Economiche "Marco Fanno".
    12. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    13. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    14. Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013. "Nelson–Plosser revisited: The ACF approach," Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
    15. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    16. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    17. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    18. Abadir Karim M. & Larsson Rolf, 2012. "Biases of Correlograms and of AR Representations of Stationary Series," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-11, May.
    19. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
    20. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    21. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    22. Violetta Dalla & Javier Hidalgo, 2005. "A Parametric Bootstrap Test for Cycles," STICERD - Econometrics Paper Series 486, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    More about this item

    Keywords

    Nonparametric model checking; spectral distribution; linear processes; martingale decomposition; local alternatives; omnibus; smooth and directional tests; long-range alternatives;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:6840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.