IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0511010.html
   My bibliography  Save this paper

Propagation of Memory Parameter from Durations to Counts

Author

Listed:
  • Rohit Deo

    (New York University)

  • Clifford Hurvich

    (New York University)

  • Philippe Soulier

    (University of Paris X)

  • Yi Wang

    (New York University)

Abstract

We establish sufficient conditions on durations that are stationary with finite variance and memory parameter $d \in [0,1/2)$ to ensure that the corresponding counting process $N(t)$ satisfies $\textmd{Var} \, N(t) \sim C t^{2d+1}$ ($C>0$) as $t \rightarrow \infty$, with the same memory parameter $d \in [0,1/2)$ that was assumed for the durations. Thus, these conditions ensure that the memory in durations propagates to the same memory parameter in counts and therefore in realized volatility. We then show that any Autoregressive Conditional Duration ACD(1,1) model with a sufficient number of finite moments yields short memory in counts, while any Long Memory Stochastic Duration model with $d>0$ and all finite moments yields long memory in counts, with the same $d$. Finally, we present a result implying that the only way for a series of counts aggregated over a long time period to have nontrivial autocorrelation is for the short-term counts to have long memory. In other words, aggregation ultimately destroys all autocorrelation in counts, if and only if the counts have short memory.

Suggested Citation

  • Rohit Deo & Clifford Hurvich & Philippe Soulier & Yi Wang, 2005. "Propagation of Memory Parameter from Durations to Counts," Econometrics 0511010, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0511010
    Note: Type of Document - pdf; pages: 27
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0511/0511010.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rohit Deo & Mengchen Hsieh & Clifford Hurvich, 2005. "Tracing the Source of Long Memory in Volatility," Econometrics 0501005, EconWPA.
    2. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    3. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    5. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    6. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(03), pages 299-336, June.
    7. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    8. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    9. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
    10. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    11. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    12. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hurvich, Cliiford & Wang, Yi, 2006. "A Pure-Jump Transaction-Level Price Model Yielding Cointegration, Leverage, and Nonsynchronous Trading Effects," MPRA Paper 1413, University Library of Munich, Germany.
    2. Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836, arXiv.org.

    More about this item

    Keywords

    Long Memory Stochastic Duration; Autoregressive Conditional Duration; Rosenthal-type Inequality.;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0511010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.