IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Adaptive Estimation of the Regression Discontinuity Model

  • Yixiao Sun

    (University of California, San Diego)

In order to reduce the finite sample bias and improve the rate of convergence, local polynomial estimators have been introduced into the econometric literature to estimate the regression discontinuity model. In this paper, we show that, when the degree of smoothness is known, the local polynomial estimator achieves the optimal rate of convergence within the Hölder smoothness class. However, when the degree of smoothness is not known, the local polynomial estimator may actually inflate the finite sample bias and reduce the rate of convergence. We propose an adaptive version of the local polynomial estimator which selects both the bandwidth and the polynomial order adaptively and show that the adaptive estimator achieves the optimal rate of convergence up to a logarithm factor without knowing the degree of smoothness. Simulation results show that the finite sample performance of the locally cross-validated adaptive estimator is robust to the parameter combinations and data generating processes, reflecting the adaptive nature of the estimator. The root mean squared error of the adaptive estimator compares favorably to local polynomial estimators in the Monte Carlo experiments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/em/papers/0506/0506003.pdf
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0506003.

as
in new window

Length: 41 pages
Date of creation: 07 Jun 2005
Date of revision:
Handle: RePEc:wpa:wuwpem:0506003
Note: Type of Document - pdf; pages: 41
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hall, Peter & Schucany, William R., 1989. "A local cross-validation algorithm," Statistics & Probability Letters, Elsevier, vol. 8(2), pages 109-117, June.
  2. Kenneth Y. Chay & Michael Greenstone, 2005. "Does Air Quality Matter? Evidence from the Housing Market," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 376-424, April.
  3. Erich Battistin & Enrico Rettore, 2002. "Testing for programme effects in a regression discontinuity design with imperfect compliance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 39-57.
  4. ANDREWS, DONALD W & Sun, Yixiao X, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence," University of California at San Diego, Economics Working Paper Series qt9wt048tt, Department of Economics, UC San Diego.
  5. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-09, January.
  6. Sandra E. Black, 1999. "Do Better Schools Matter? Parental Valuation Of Elementary Education," The Quarterly Journal of Economics, MIT Press, vol. 114(2), pages 577-599, May.
  7. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  8. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
  9. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
  10. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule To Estimate The Effect Of Class Size On Scholastic Achievement," The Quarterly Journal of Economics, MIT Press, vol. 114(2), pages 533-575, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0506003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.