IDEAS home Printed from
   My bibliography  Save this paper

The Oracle Local Polynomial Estimator


  • Torres, Santiago

    (Universidad de los Andes)


This paper introduces a new estimator for continuity-based Regression Discontinuity (RD) designs named the estimated Oracle Local Polynomial Estimator (OLPE). The OLPE is a weighted average of a collection of local polynomial estimators, each of which is characterized by a unique bandwidth sequence, polynomial order, and kernel weighting schemes, and whose weights are chosen to minimize the Mean-Squared Error (MSE) of the combination. This procedure yields a new consistent estimator of the target causal effect exhibiting lower bias and/or variance than its components. The precision gains stem from two factors. First, the method allocates more weight to estimators with lower asymptotic mean squared error, allowing it to select the specifications that are best suited to the specific estimation problem. Second, even if the individual estimators are not optimal, averaging mechanically leads to bias reduction and variance shrinkage. Although the OLPE weights are unknown, an “estimated” OLPE can be constructed by replacing unobserved MSE-optimal weights with those derived from a consistent estimator. Monte Carlo simulations indicate that the estimated OLPE can significantly enhance precision compared to conventional local polynomial methods, even in small sample sizes. The estimated OLPE remains consistent and asymptotically normal without imposing additional assumptions beyond those required for local polynomial estimators. Moreover, this approach applies to sharp, fuzzy, and kink RD designs, with or without covariates.

Suggested Citation

  • Torres, Santiago, 2023. "The Oracle Local Polynomial Estimator," Documentos CEDE 20937, Universidad de los Andes, Facultad de Economía, CEDE.
  • Handle: RePEc:col:000089:020937

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    More about this item


    Regression Discontinuity Designs; Non-parametric Estimation; Local Polynomial Estimators; Causal Inference; Mean-Squared Error.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000089:020937. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad De Los Andes-Cede (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.