IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Long-range dependence and multifractality in the term structure of LIBOR interest rates

  • Cajueiro, Daniel O.
  • Tabak, Benjamin M.

In this paper we present evidence of long-range dependence in LIBOR interest rates. We study a data set from 2000 to 2005, for six different currencies and various maturities. Empirical results suggest that the degree of long-range dependence decreases with maturity, with the exception of interest rates on Japanese Yen and on Indonesian Rupiah. Furthermore, interest rates have a multifractal nature and the degree of multifractality is much stronger for Indonesia (emerging market). These findings suggest that interest rates derivatives should take these features into account. Furthermore, fixed income risk and portfolio management should incorporate long-range dependence in the modeling of interest rates.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0378437106004791
Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

Volume (Year): 373 (2007)
Issue (Month): C ()
Pages: 603-614

as
in new window

Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:603-614
Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "Testing for time-varying long-range dependence in volatility for emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 577-588.
  2. J. -P. Bouchaud & N. Sagna & R. Cont & N. El-Karoui & M. Potters, 1997. "Phenomenology of the Interest Rate Curve," Papers cond-mat/9712164, arXiv.org.
  3. Tabak, Benjamin M. & Cajueiro, Daniel O., 2005. "The long-range dependence behavior of the term structure of interest rates in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 418-426.
  4. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
  5. David K. Backus & Stanley E. Zin, 1993. "Long-memory Inflation Uncertainty: Evidence from the Term Structure of Interest Rates," NBER Technical Working Papers 0133, National Bureau of Economic Research, Inc.
  6. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
  7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
  8. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-313, September.
  9. Castro e Silva, A. & Moreira, J.G., 1997. "Roughness exponents to calculate multi-affine fractal exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 327-333.
  10. Barkoulas, John T. & Baum, Christopher F., 1998. "Fractional dynamics in Japanese financial time series," Pacific-Basin Finance Journal, Elsevier, vol. 6(1-2), pages 115-124, May.
  11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:603-614. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.