IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v226y2024icp172-183.html
   My bibliography  Save this article

Pricing Asian options under the mixed fractional Brownian motion with jumps

Author

Listed:
  • Shokrollahi, F.
  • Ahmadian, D.
  • Ballestra, L.V.

Abstract

The mixed fractional Brownian motion (mfBm) has gained popularity in finance because it can effectively model long-range dependence, self-similarity, and is arbitrage-free. This paper focuses on mfBm with jumps modeled by the Poisson process and derives an analytical formula for valuing geometric Asian options. Additionally, approximate closed-form solutions for pricing arithmetic Asian options and arithmetic Asian power options are obtained. Numerical examples are provided to demonstrate the accuracy of these formulas, which rely on a convenient approximation of the option strike price. The proposed approximation demonstrates significantly higher computational efficiency compared to Monte Carlo simulation.

Suggested Citation

  • Shokrollahi, F. & Ahmadian, D. & Ballestra, L.V., 2024. "Pricing Asian options under the mixed fractional Brownian motion with jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 172-183.
  • Handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:172-183
    DOI: 10.1016/j.matcom.2024.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424002398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. He, Xinjiang & Chen, Wenting, 2014. "The pricing of credit default swaps under a generalized mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 26-33.
    6. Wang, Xiao-Tian & Zhu, En-Hui & Tang, Ming-Ming & Yan, Hai-Gang, 2010. "Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 445-451.
    7. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    8. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    9. Foad Shokrollahi & Adem Kılıçman, 2014. "Pricing Currency Option in a Mixed Fractional Brownian Motion with Jumps Environment," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, April.
    10. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    11. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    12. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    13. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    14. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    15. Vorst, Ton, 1992. "Prices and hedge ratios of average exchange rate options," International Review of Financial Analysis, Elsevier, vol. 1(3), pages 179-193.
    16. Mounir Zili, 2006. "On the mixed fractional Brownian motion," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-9, August.
    17. Christian Bender & Robert J. Elliott, 2004. "Arbitrage in a Discrete Version of the Wick-Fractional Black-Scholes Market," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 935-945, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foad Shokrollahi & Davood Ahmadian & Luca Vincenzo Ballestra, 2021. "Actuarial strategy for pricing Asian options under a mixed fractional Brownian motion with jumps," Papers 2105.06999, arXiv.org.
    2. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    3. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
    5. Alexander Kukush & Stanislav Lohvinenko & Yuliya Mishura & Kostiantyn Ralchenko, 2022. "Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 159-187, April.
    6. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    7. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    8. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    9. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    10. Ahmadian, D. & Ballestra, L.V. & Shokrollahi, F., 2022. "A Monte-Carlo approach for pricing arithmetic Asian rainbow options under the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Zhaoqiang Yang, 2017. "Efficient valuation and exercise boundary of American fractional lookback option in a mixed jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    12. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    13. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    14. J. A. Nielsen & K. Sandmann, 1996. "The pricing of Asian options under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(3), pages 209-236.
    15. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Peter G. Zhang, 1995. "An introduction to exotic options," European Financial Management, European Financial Management Association, vol. 1(1), pages 87-95, March.
    17. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    18. Manuel Moreno & Javier F. Navas, 2008. "Australian Options," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 69-93, June.
    19. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Zhang, Pu & Sun, Qi & Xiao, Wei-Lin, 2014. "Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm," Economic Modelling, Elsevier, vol. 40(C), pages 314-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:172-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.