IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/201319.html
   My bibliography  Save this paper

Copula-based dynamic conditional correlation multiplicative error processes

Author

Listed:
  • Bodnar, Taras
  • Hautsch, Nikolaus

Abstract

We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on high-frequency volatility, cumulative trading volumes, trade counts and market depth of various stocks traded at the NYSE, we show that the proposed copula-based transformation is supported by the data and allows capturing (multivariate) dynamics in higher order moments. The latter are modeled using a DCC-GARCH specification. We suggest estimating the model by composite maximum likelihood which is sufficiently flexible to be applicable in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances in trading processes supports the usefulness of the approach. Taking these higher-order dynamics explicitly into account significantly improves the goodness-of-fit of the multiplicative error model and allows capturing time-varying liquidity risks.

Suggested Citation

  • Bodnar, Taras & Hautsch, Nikolaus, 2013. "Copula-based dynamic conditional correlation multiplicative error processes," CFS Working Paper Series 2013/19, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:201319
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/87704/1/77164938X.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2013. "Semiparametric Vector Mem," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1067-1086, November.
    2. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Intra-daily Volume Modeling and Prediction for Algorithmic Trading," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(3), pages 489-518, Summer.
    3. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    4. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    5. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
    8. Patton, Andrew J, 2001. "Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula," University of California at San Diego, Economics Working Paper Series qt01q7j1s2, Department of Economics, UC San Diego.
    9. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    10. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    11. Glosten, Lawrence R, 1994. " Is the Electronic Open Limit Order Book Inevitable?," Journal of Finance, American Finance Association, vol. 49(4), pages 1127-1161, September.
    12. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    13. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    17. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    18. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    19. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    multiplicative error model; trading processes; copula; DCC-GARCH; liquidity risk;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:201319. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/ifkcfde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.