IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v221y2021i1p1-24.html
   My bibliography  Save this article

Bootstrap based probability forecasting in multiplicative error models

Author

Listed:
  • Perera, Indeewara
  • Silvapulle, Mervyn J.

Abstract

As evidenced by an extensive empirical literature, multiplicative error models (MEM) show good performance in capturing the stylized facts of nonnegative time series; examples include, trading volume, financial durations, and volatility. This paper develops a bootstrap based method for producing multi-step-ahead probability forecasts for a nonnegative valued time-series obeying a parametric MEM. In order to test the adequacy of the underlying parametric model, a class of bootstrap specification tests is also developed. Rigorous proofs are provided for establishing the validity of the proposed bootstrap methods. The paper also establishes the validity of a bootstrap based method for producing probability forecasts in a class of semiparametric MEMs. Monte Carlo simulations suggest that our methods perform well in finite samples. A real data example illustrates the methods.

Suggested Citation

  • Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
  • Handle: RePEc:eee:econom:v:221:y:2021:i:1:p:1-24
    DOI: 10.1016/j.jeconom.2020.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620300440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bei Chen & Yulia R. Gel & N. Balakrishna & Bovas Abraham, 2011. "Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 51-71, January.
    2. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    3. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    4. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    5. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    6. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    7. Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013. "A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators," Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
    8. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    9. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    10. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    11. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    12. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    13. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    14. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    15. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
    16. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    17. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    18. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    19. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.
    20. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    21. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    22. Koul, Hira L. & Perera, Indeewara & Silvapulle, Mervyn J., 2012. "Lack-Of-Fit Testing Of The Conditional Mean Function In A Class Of Markov Multiplicative Error Models," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1283-1312, December.
    23. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
    24. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    25. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    26. Gao, Jiti & Kim, Nam Hyun & Saart, Patrick W., 2015. "A misspecification test for multiplicative error models of non-negative time series processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 346-359.
    27. repec:qut:auncer:2012_5 is not listed on IDEAS
    28. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    29. GRAMMIG , Joachim & WELLNER, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," LIDAM Reprints CORE 1534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    31. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    32. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    33. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    34. Indeewara Perera & Javier Hidalgo & Mervyn J. Silvapulle, 2016. "A Goodness-of-Fit Test for a Class of Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1111-1141, June.
    35. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    36. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    37. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    38. J. Pfanzagl, 1969. "On the measurability and consistency of minimum contrast estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 14(1), pages 249-272, December.
    39. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2005. "Bootstrapping modified goodness-of-fit statistics with estimated parameters," Statistics & Probability Letters, Elsevier, vol. 71(2), pages 111-121, February.
    40. Perera, Indeewara & Silvapulle, Mervyn J., 2017. "Specification Tests For Multiplicative Error Models," Econometric Theory, Cambridge University Press, vol. 33(2), pages 413-438, April.
    41. Guo, Bin & Li, Shuo, 2018. "Diagnostic checking of Markov multiplicative error models," Economics Letters, Elsevier, vol. 170(C), pages 139-142.
    42. Giovanni De Luca & Giampiero M. Gallo & Danilo Carità, 2017. "Evaluating Combined Forecasts for Realized Volatility Using Asymmetric Loss Functions," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(2), pages 99-111, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cavaliere & Indeewara Perera & Anders Rahbek, 2021. "Specification tests for GARCH processes," Papers 2105.14081, arXiv.org.
    2. Perera, Indeewara & Silvapulle, Mervyn J., 2023. "Bootstrap specification tests for dynamic conditional distribution models," Journal of Econometrics, Elsevier, vol. 235(2), pages 949-971.
    3. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    4. Hira L. Koul & Indeewara Perera & Narayana Balakrishna, 2023. "A class of Minimum Distance Estimators in Markovian Multiplicative Error Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 87-115, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    2. Hira L. Koul & Indeewara Perera & Narayana Balakrishna, 2023. "A class of Minimum Distance Estimators in Markovian Multiplicative Error Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 87-115, May.
    3. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    4. Ke, Rui & Lu, Wanbo & Jia, Jing, 2021. "Evaluating multiplicative error models: A residual-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    5. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    6. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
    7. Fabrizio Cipollini & Giampiero M. Gallo, 2021. "Multiplicative Error Models: 20 years on," Papers 2107.05923, arXiv.org.
    8. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    9. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    10. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    11. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    12. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    13. Gao, Jiti & Kim, Nam Hyun & Saart, Patrick W., 2015. "A misspecification test for multiplicative error models of non-negative time series processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 346-359.
    14. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    15. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    17. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    18. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    19. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
    20. Francisco Blasques & Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros," Papers 1812.07318, arXiv.org, revised May 2024.
    21. N. Balakrishna & Hira L. Koul, 2017. "Varying kernel marginal density estimator for a positive time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 531-552, July.
    22. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.

    More about this item

    Keywords

    Multiplicative error model; Bootstrap; Probability forecast; Goodness-of-fit; Multi-step forecast;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:221:y:2021:i:1:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.