IDEAS home Printed from
   My bibliography  Save this article

Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes


  • Bei Chen
  • Yulia R. Gel
  • N. Balakrishna
  • Bovas Abraham


We propose a novel, simple, efficient and distribution-free re‐sampling technique for developing prediction intervals for returns and volatilities following ARCH/GARCH models. In particular, our key idea is to employ a Box–Jenkins linear representation of an ARCH/GARCH equation and then to adapt a sieve bootstrap procedure to the nonlinear GARCH framework. Our simulation studies indicate that the new re‐sampling method provides sharp and well calibrated prediction intervals for both returns and volatilities while reducing computational costs by up to 100 times, compared to other available re‐sampling techniques for ARCH/GARCH models. The proposed procedure is illustrated by an application to Yen/U.S. dollar daily exchange rate data. Copyright (C) 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Bei Chen & Yulia R. Gel & N. Balakrishna & Bovas Abraham, 2011. "Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 51-71, January.
  • Handle: RePEc:jof:jforec:v:30:y:2011:i:1:p:51-71

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:energy:v:125:y:2017:i:c:p:248-257 is not listed on IDEAS
    2. repec:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-017-0098-2 is not listed on IDEAS
    3. Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:1:p:51-71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.