IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0649.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Testing for Volatility Interactions in the Constant Conditional Correlation GARCH Model

Author

Listed:
  • Nakatani, Tomoaki

    (Dept. of Economic Statistics, Stockholm School of Economics)

  • Teräsvirta, Timo

    (School of Management and Economics)

Abstract

In this paper we propose a Lagrange multiplier test for volatility interactions among markets or assets. The null hypothesis is the Constant Conditional Correlation GARCH model in which volatility of an asset is described only through lagged squared innovations and volatility of its own. The alternative hypothesis is an extension of that model in which volatility is modelled as a linear combination not only of its own lagged squared innovations and volatility but also of those in the other equations while keeping the conditional correlation structure constant. This configuration enables us to test for volatility transmissions among variables in the model. Monte Carlo experiments show that the proposed test has satisfactory finite sample properties. The size distortions become negligible when the sample size reaches 2500. The test is applied to pairs of foreign exchange returns and individual stock returns. Results indicate that there seem to be volatility interactions in the pairs considered, and that significant interaction effects typically result from the lagged squared innovations of the other variables.

Suggested Citation

  • Nakatani, Tomoaki & Teräsvirta, Timo, 2007. "Testing for Volatility Interactions in the Constant Conditional Correlation GARCH Model," SSE/EFI Working Paper Series in Economics and Finance 649, Stockholm School of Economics, revised 04 May 2008.
  • Handle: RePEc:hhs:hastef:0649
    as

    Download full text from publisher

    File URL: http://swopec.hhs.se/hastef/papers/hastef0649.appendix.pdf
    File Function: appendix
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    4. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    5. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    6. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
    7. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    8. Hong, Yongmiao, 2001. "A test for volatility spillover with application to exchange rates," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 183-224, July.
    9. Eklund, Bruno & Terasvirta, Timo, 2007. "Testing constancy of the error covariance matrix in vector models," Journal of Econometrics, Elsevier, vol. 140(2), pages 753-780, October.
    10. He, Changli & Teräsvirta, Timo, 2002. "An application of the analogy between vector ARCH and vector random coefficient autoregressive models," SSE/EFI Working Paper Series in Economics and Finance 516, Stockholm School of Economics.
    11. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    12. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    13. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    14. Berben, Robert-Paul & Jansen, W. Jos, 2005. "Comovement in international equity markets: A sectoral view," Journal of International Money and Finance, Elsevier, vol. 24(5), pages 832-857, September.
    15. Cheung, Yin-Wong & Ng, Lilian K., 1996. "A causality-in-variance test and its application to financial market prices," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 33-48.
    16. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    17. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    19. Cifarelli, Giulio & Paladino, Giovanna, 2005. "Volatility linkages across three major equity markets: A financial arbitrage approach," Journal of International Money and Finance, Elsevier, vol. 24(3), pages 413-439, April.
    20. Bera, Anil K. & Kim, Sangwhan, 2002. "Testing constancy of correlation and other specifications of the BGARCH model with an application to international equity returns," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 171-195, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    2. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    3. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    4. repec:wyi:journl:002141 is not listed on IDEAS
    5. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.
    8. Paul Catani & Timo Teräsvirta & Meiqun Yin, 2017. "A Lagrange multiplier test for testing the adequacy of constant conditional correlation GARCH model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 599-621, October.
    9. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    10. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    11. Arif Orçun Söylemez, 2013. "Stock Exchange Volatility Transmissions between Turkey and the Major Financial Centers," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 1(2), pages 27-32.
    12. M. Fatih Oztek & Nadir Ocal, 2012. "Integration of China Stock Markets with International Stock Markets: An application of Smooth Transition Conditional Correlation with Double Transition Functions," ERC Working Papers 1209, ERC - Economic Research Center, Middle East Technical University, revised Dec 2012.
    13. Anne Péguin-Feissolle & Bilel Sanhaji, 2015. "Testing the Constancy of Conditional Correlations in Multivariate GARCH-type Models (Extended Version with Appendix)," Working Papers halshs-01133751, HAL.
    14. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. repec:wyi:journl:002103 is not listed on IDEAS
    16. Ndiweni, Zinzile Lorna & Bonga-Bonga, Lumengo, 2022. "Contagion or decoupling? Evidence from emerging stock markets," MPRA Paper 115170, University Library of Munich, Germany.
    17. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Kim, Bong-Han & Kim, Hyeongwoo & Lee, Bong-Soo, 2015. "Spillover effects of the U.S. financial crisis on financial markets in emerging Asian countries," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 192-210.
    19. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    20. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    21. Afees A. Salisu & Kazeem Isah, 2017. "Modeling the spillovers between stock market and money market in Nigeria," Working Papers 023, Centre for Econometric and Allied Research, University of Ibadan.
    22. Zouheir Mighri, 2018. "On the Dynamic Linkages Among International Emerging Currencies," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 427-473, June.

    More about this item

    Keywords

    Multivariate GARCH; Volatility interactions; Lagrange multiplier test; Monte Carlo simulation; Conditional correlations;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G19 - Financial Economics - - General Financial Markets - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.