IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v34y2015i1-2p174-197.html
   My bibliography  Save this article

Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach

Author

Listed:
  • Annastiina Silvennoinen
  • Timo Teräsvirta

Abstract

In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of five frequently traded stocks in the S&P 500 stock index completes the paper.

Suggested Citation

  • Annastiina Silvennoinen & Timo Teräsvirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
  • Handle: RePEc:taf:emetrv:v:34:y:2015:i:1-2:p:174-197
    DOI: 10.1080/07474938.2014.945336
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2014.945336
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    2. Markku Lanne & Pentti Saikkonen, 2005. "Non-linear GARCH models for highly persistent volatility," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 251-276, July.
    3. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    4. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
    5. repec:cor:louvrp:-1847 is not listed on IDEAS
    6. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    9. Susan Thorp & George Milunovich, 2007. "Symmetric Versus Asymmetric Conditional Covariance Forecasts: Does It Pay To Switch?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 30(3), pages 355-377, September.
    10. Francois Chesnay & Eric Jondeau, 2001. "Does Correlation Between Stock Returns Really Increase During Turbulent Periods?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(1), pages 53-80, February.
    11. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    12. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1236-1278, December.
    13. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    14. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    16. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    17. De Santis, Giorgio & Gerard, Bruno, 1997. " International Asset Pricing and Portfolio Diversification with Time-Varying Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1881-1912, December.
    18. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    19. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    20. Berben, Robert-Paul & Jansen, W. Jos, 2005. "Comovement in international equity markets: A sectoral view," Journal of International Money and Finance, Elsevier, vol. 24(5), pages 832-857, September.
    21. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    22. Bera, Anil K. & Kim, Sangwhan, 2002. "Testing constancy of correlation and other specifications of the BGARCH model with an application to international equity returns," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 171-195, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ohashi, Kazuhiko & Okimoto, Tatsuyoshi, 2016. "Increasing trends in the excess comovement of commodity prices," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 48-64.
    2. Heejoon Han & Dennis Kristensen, 2014. "Asymptotic Theory for the QMLE in GARCH-X Models With Stationary and Nonstationary Covariates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 416-429, July.
    3. repec:oup:jfinec:v:15:y:2017:i:2:p:247-285. is not listed on IDEAS
    4. Cristina Amado & Annastiina Silvennoinen & Timo Ter¨asvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," NIPE Working Papers 07/2018, NIPE - Universidade do Minho.
    5. repec:eee:intfor:v:34:y:2018:i:4:p:711-732 is not listed on IDEAS
    6. Susana Martins & Cristina Amado, 2018. "Financial Market Contagion and the Sovereign Debt Crisis: A Smooth Transition Approach," NIPE Working Papers 08/2018, NIPE - Universidade do Minho.
    7. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    8. L. Bauwens & E. Otranto, 2013. "Modeling the Dependence of Conditional Correlations on Volatility," Working Paper CRENoS 201304, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    9. repec:eee:intfor:v:34:y:2018:i:1:p:45-63 is not listed on IDEAS
    10. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    11. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    12. De Santis, Roberto A. & Stein, Michael, 2016. "Correlation changes between the risk-free rate and sovereign yields of euro area countries," Working Paper Series 1979, European Central Bank.
    13. repec:qut:auncer:2013_03 is not listed on IDEAS
    14. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
    15. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    16. E. Otranto, 2015. "Adding Flexibility to Markov Switching Models," Working Paper CRENoS 201509, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. repec:eee:ecofin:v:47:y:2019:i:c:p:568-596 is not listed on IDEAS
    18. L. Bauwens & E. Otrando, 2018. "Nonlinearities and Regimes in Conditional Correlations with Different Dynamics," Working Paper CRENoS 201803, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    19. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.
    20. Kryzanowski, Lawrence & Zhang, Jie & Zhong, Rui, 2017. "Cross-financial-market correlations and quantitative easing," Finance Research Letters, Elsevier, vol. 20(C), pages 13-21.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:34:y:2015:i:1-2:p:174-197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.