IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v8y2005i2p251-276.html
   My bibliography  Save this article

Non-linear GARCH models for highly persistent volatility

Author

Listed:
  • Markku Lanne
  • Pentti Saikkonen

Abstract

In this paper we study a new class of nonlinear GARCH models. Special interest is devoted to models that are similar to previously introduced smooth transition GARCH models except for the novel feature that a lagged value of conditional variance is used as the transition variable. This choice of the transition variable is mainly motivated by the desire to find useful models for highly persistent volatility. The underlying idea is that high persistence in conditional variance is related to relatively infrequent changes in regime, which can be captured by a suitable specification of the new model. Using the theory of Markov chains, we provide sufficient conditions for the stationarity and existence of moments of various smooth transition GARCH models and even more general nonlinear GARCH models. An empirical application to an exchange rate return series demonstrates the differences between the new model and conventional GARCH models. Copyright 2005 Royal Economic Society

Suggested Citation

  • Markku Lanne & Pentti Saikkonen, 2005. "Non-linear GARCH models for highly persistent volatility," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 251-276, July.
  • Handle: RePEc:ect:emjrnl:v:8:y:2005:i:2:p:251-276
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2005.00163.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levine, Michael & Li, Jinguang (Tony), 2012. "A simple additivity test for conditionally heteroscedastic nonlinear autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2421-2429.
    2. repec:ntu:ntugeo:vol2-iss1-14-042 is not listed on IDEAS
    3. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    4. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 15(3), pages 94-138.
    5. Dueker Michael J. & Psaradakis Zacharias & Sola Martin & Spagnolo Fabio, 2011. "Contemporaneous-Threshold Smooth Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-25, March.
    6. Philippe Charlot & Vêlayoudom Marimoutou, 2008. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model," Working Papers halshs-00285866, HAL.
    7. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.
    8. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    9. Stein, Michael & Islami, Mevlud & Lindemann, Jens, 2012. "Identifying time variability in stock and interest rate dependence," Discussion Papers 24/2012, Deutsche Bundesbank.
    10. Hsiang-Hsi Liu & Chun-Chou Wu & Yi Kai Su, 2012. "The influence of direct cross-straits shipping on the smooth transition dynamics of stock volatilities of shipping companies," Applied Financial Economics, Taylor & Francis Journals, vol. 22(16), pages 1331-1342, August.
    11. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Annastiina Silvennoinen & Timo Teräsvirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    13. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models : from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    14. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    15. Malmsten, Hans, 2004. "Evaluating exponential GARCH models," SSE/EFI Working Paper Series in Economics and Finance 564, Stockholm School of Economics, revised 03 Sep 2004.
    16. Stan Hurn & Nicholas Johnson & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Transition from the Taylor rule to the zero lower bound," CREATES Research Papers 2018-31, Department of Economics and Business Economics, Aarhus University.
    17. Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, 2014. "Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 42-47, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:8:y:2005:i:2:p:251-276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.