IDEAS home Printed from https://ideas.repec.org/p/pad/wpaper/0106.html
   My bibliography  Save this paper

Modelling and forecasting wind speed intensity for weather risk management

Author

Listed:
  • Massimiliano Caporin

    () (Università di Padova)

  • Juliusz Pres

    (Szczecin University of Technology)

Abstract

The modelling of wind speed is a traditional topic in meteorological research, where the main interest is on the short-term forecast of wind speed intensity and direction. More recently, this theme has received some interest in the quantitative finance literature for its relationship with electricity production by wind farms. In fact, electricity producers are interested in long-range forecasts and simulation of wind speed for two main reasons: to evaluate the profitability of building a wind farm in a given location and to offset the risks associated with the variability of wind speed for an already operating wind farm. In this paper, we contribute to the increasing literature regarding environmental finance by comparing three approaches that are capable of forecasting and simulating the long run evolution of wind speed intensity (direction is not a concern, given that the recent turbines can rotate to follow wind direction): the Auto Regressive Gamma process, the Gamma Auto Regressive process, and the ARFIMA-FIGARCH model. We provide both in-sample and out-of-sample comparisons of the models, as well as some examples for the pricing of wind speed derivatives using a model-based Monte Carlo simulation approach.

Suggested Citation

  • Massimiliano Caporin & Juliusz Pres, 2010. "Modelling and forecasting wind speed intensity for weather risk management," "Marco Fanno" Working Papers 0106, Dipartimento di Scienze Economiche "Marco Fanno".
  • Handle: RePEc:pad:wpaper:0106
    as

    Download full text from publisher

    File URL: http://economia.unipd.it/sites/decon.unipd.it/files/20100106.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beine, Michel & Laurent, Sebastien, 2003. "Central bank interventions and jumps in double long memory models of daily exchange rates," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 641-660, December.
    2. Jewson,Stephen & Brix,Anders, 2005. "Weather Derivative Valuation," Cambridge Books, Cambridge University Press, number 9780521843713, May.
    3. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    4. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    5. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    6. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    7. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    10. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    11. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    12. M. Davis, 2001. "Pricing weather derivatives by marginal value," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 305-308, March.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Massimiliano Caporin & Juliusz Pres, 2008. "Forecasting temperature indices with timevarying long-memory models," "Marco Fanno" Working Papers 0088, Dipartimento di Scienze Economiche "Marco Fanno".
    15. Moller, Jan Kloppenborg & Nielsen, Henrik Aalborg & Madsen, Henrik, 2008. "Time-adaptive quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1292-1303, January.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ambach, Daniel & Schmid, Wolfgang, 2015. "Periodic and long range dependent models for high frequency wind speed data," Energy, Elsevier, vol. 82(C), pages 277-293.
    2. Massimiliano Caporin & Angelo Ranaldo & Gabriel G. Velo, 2015. "Precious metals under the microscope: a high-frequency analysis," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 743-759, May.
    3. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010. "Combining predictive densities using Bayesian filtering with applications to US economics data," Working Paper 2010/29, Norges Bank.
    4. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    5. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    6. repec:eee:reensy:v:152:y:2016:i:c:p:66-82 is not listed on IDEAS
    7. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    8. Caporin, Massimiliano & Fontini, Fulvio, 2014. "The Value of Protecting Venice from the Acqua Alta Phenomenon under Different Local Sea Level Rises," MPRA Paper 53779, University Library of Munich, Germany.
    9. repec:ctc:serie1:def10 is not listed on IDEAS
    10. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    11. Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2013. "Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals," Working Papers on Finance 1318, University of St. Gallen, School of Finance.
    12. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    13. Contreras, Javier & Rodríguez, Yeny E., 2014. "GARCH-based put option valuation to maximize benefit of wind investors," Applied Energy, Elsevier, vol. 136(C), pages 259-268.
    14. repec:eee:renene:v:118:y:2018:i:c:p:213-229 is not listed on IDEAS

    More about this item

    Keywords

    Gamma Auto Regressive; Auto Regressive Gamma; ARFIMA-FIGARCH; wind speed modelling; wind speed simulation;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pad:wpaper:0106. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Raffaele Dei Campielisi). General contact details of provider: http://edirc.repec.org/data/dspadit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.