IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Modelling and forecasting wind speed intensity for weather risk management

  • Massimiliano Caporin


    (Università di Padova)

  • Juliusz Pres

    (Szczecin University of Technology)

The modelling of wind speed is a traditional topic in meteorological research, where the main interest is on the short-term forecast of wind speed intensity and direction. More recently, this theme has received some interest in the quantitative finance literature for its relationship with electricity production by wind farms. In fact, electricity producers are interested in long-range forecasts and simulation of wind speed for two main reasons: to evaluate the profitability of building a wind farm in a given location and to offset the risks associated with the variability of wind speed for an already operating wind farm. In this paper, we contribute to the increasing literature regarding environmental finance by comparing three approaches that are capable of forecasting and simulating the long run evolution of wind speed intensity (direction is not a concern, given that the recent turbines can rotate to follow wind direction): the Auto Regressive Gamma process, the Gamma Auto Regressive process, and the ARFIMA-FIGARCH model. We provide both in-sample and out-of-sample comparisons of the models, as well as some examples for the pricing of wind speed derivatives using a model-based Monte Carlo simulation approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Dipartimento di Scienze Economiche "Marco Fanno" in its series "Marco Fanno" Working Papers with number 0106.

in new window

Length: 38 pages
Date of creation: Jan 2010
Date of revision:
Handle: RePEc:pad:wpaper:0106
Contact details of provider: Postal: via del Santo, 33 - 35122 Padova
Phone: +39 +49 8274210
Fax: +39 +49 827.4211
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sean D. Campbell & Francis X. Diebold, 2002. "Weather Forecasting for Weather Derivatives," Center for Financial Institutions Working Papers 02-42, Wharton School Center for Financial Institutions, University of Pennsylvania.
  2. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
  3. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  5. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  6. Massimiliano Caporin & Juliusz Pres, 2008. "Forecasting temperature indices with timevarying long-memory models," "Marco Fanno" Working Papers 0088, Dipartimento di Scienze Economiche "Marco Fanno".
  7. Beine, Michel & Laurent, Sebastien, 2003. "Central bank interventions and jumps in double long memory models of daily exchange rates," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 641-660, December.
  8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  9. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  10. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, 09.
  11. Jewson,Stephen & Brix,Anders, 2005. "Weather Derivative Valuation," Cambridge Books, Cambridge University Press, number 9780521843713.
  12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  13. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
  14. M. Davis, 2001. "Pricing weather derivatives by marginal value," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 305-308.
  15. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
  16. Moller, Jan Kloppenborg & Nielsen, Henrik Aalborg & Madsen, Henrik, 2008. "Time-adaptive quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1292-1303, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pad:wpaper:0106. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Raffaele Dei Campielisi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.