IDEAS home Printed from
   My bibliography  Save this article

Model based Monte Carlo pricing of energy and temperature Quanto options


  • Caporin, Massimiliano
  • Preś, Juliusz
  • Torro, Hipolit


Weather derivatives have become very popular tools in weather risk management in recent years. One of the elements supporting their diffusion has been the increase in volatility observed on many energy markets. Among the several available contracts, Quanto options are now becoming very popular for a simple reason: they take into account the strong correlation between energy consumption and certain weather conditions, so enabling price and weather risk to be controlled at the same time. These products are more efficient and, in many cases, significantly cheaper than simpler plain vanilla options. Unfortunately, the specific features of energy and weather time series do not enable the use of analytical formulae based on the Black-Scholes pricing approach, nor other more advanced continuous time methods that extend the Black-Scholes approach, unless under strong and unrealistic assumptions. In this study, we propose a Monte Carlo pricing framework based on a bivariate time series model. Our approach takes into account the average and variance interdependence between temperature and energy price series. Furthermore, our approach includes other relevant empirical features, such as periodic patterns in average, variance, and correlations. The model structure enables a more appropriate pricing of Quanto options compared to traditional methods.

Suggested Citation

  • Caporin, Massimiliano & Preś, Juliusz & Torro, Hipolit, 2012. "Model based Monte Carlo pricing of energy and temperature Quanto options," Energy Economics, Elsevier, vol. 34(5), pages 1700-1712.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:5:p:1700-1712 DOI: 10.1016/j.eneco.2012.02.008

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    2. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(03), pages 301-329, September.
    3. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    4. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    5. T. S. Ho & Richard C. Stapleton & Marti G. Subrahmanyam, 1995. "Correlation risk, cross-market derivative products and portfolio performance," European Financial Management, European Financial Management Association, vol. 1(2), pages 105-124.
    6. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    7. Gibson, Rajna & Schwartz, Eduardo S, 1990. " Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    8. Christodoulakis, George A. & Satchell, Stephen E., 2002. "Correlated ARCH (CorrARCH): Modelling the time-varying conditional correlation between financial asset returns," European Journal of Operational Research, Elsevier, vol. 139(2), pages 351-370, June.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    11. Silvano Bordignon & Massimiliano Caporin & Francesco Lisi, 2009. "Periodic Long-Memory GARCH Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 60-82.
    12. M. Davis, 2001. "Pricing weather derivatives by marginal value," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 305-308, March.
    13. Fred ESPEN Benth & Jurate saltyte Benth, 2007. "The volatility of temperature and pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 553-561.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
    16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    17. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    18. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lunina, Veronika, 2016. "Joint Modelling of Power Price, Temperature, and Hydrological Balance with a View towards Scenario Analysis," Working Papers 2016:30, Lund University, Department of Economics.
    2. Fred Espen Benth & Paul Kruhner, 2014. "Derivatives pricing in energy markets: an infinite dimensional approach," Papers 1412.7943,
    3. Massimiliano Caporin & Fulvio Fontini & Paolo Santucci De Magistris, 2017. "Price convergence within and between the Italian electricity day-ahead and dispatching services markets," "Marco Fanno" Working Papers 0215, Dipartimento di Scienze Economiche "Marco Fanno".
    4. Khalifa, Ahmed & Caporin, Massimiliano & Hammoudeh, Shawkat, 2015. "Spillovers between energy and FX markets: The importance of asymmetry, uncertainty and business cycle," Energy Policy, Elsevier, vol. 87(C), pages 72-82.
    5. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.

    More about this item


    Weather derivatives; Quanto option pricing; Derivative pricing; Model simulation and forecast;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:5:p:1700-1712. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.