IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v21y2000i1p75-93.html
   My bibliography  Save this article

Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models

Author

Listed:
  • Robert Lund
  • I. V. Basawa

Abstract

This paper explores recursive prediction and likelihood evaluation techniques for periodic autoregressive moving‐average (PARMA) time series models. The innovations algorithm is used to develop a simple recursive scheme for computing one‐step‐ahead predictors and their mean squared errors. The asymptotic form of this recursion is explored. The prediction results are then used to develop an efficient (and exact) PARMA likelihood evaluation algorithm for Gaussian series. We then show how a multivariate autoregressive moving average (ARMA) likelihood can be evaluated by writing the multivariate ARMA model in PARMA form. Explicit calculations for PARMA(1, 1) models and periodic autoregressions are included.

Suggested Citation

  • Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
  • Handle: RePEc:bla:jtsera:v:21:y:2000:i:1:p:75-93
    DOI: 10.1111/1467-9892.00174
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00174
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    2. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    3. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    4. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    5. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    6. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    7. Shao, Q. & Ni, P.P., 2004. "Least-squares estimation and ANOVA for periodic autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 287-297, September.
    8. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    9. Abdelouahab Bibi & Christian Francq, 2003. "Consistent and asymptotically normal estimators for cyclically time-dependent linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 41-68, March.
    10. Anderson, Paul L. & Kavalieris, Laimonis & Meerschaert, Mark M., 2008. "Innovations algorithm asymptotics for periodically stationary time series with heavy tails," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 94-116, January.
    11. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    12. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, July.
    13. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    14. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    15. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    16. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    17. Hurd, H. & Makagon, A. & Miamee, A. G., 0. "On AR(1) models with periodic and almost periodic coefficients," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 167-185, July.
    18. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    19. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.
    20. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    21. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    22. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.
    23. Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:21:y:2000:i:1:p:75-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.