IDEAS home Printed from https://ideas.repec.org/a/wsi/afexxx/v11y2016i04ns2010495216500202.html
   My bibliography  Save this article

A Multiscale Stochastic Conditional Duration Model

Author

Listed:
  • ZHONGXIAN MEN

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1, Canada)

  • TONY S. WIRJANTO

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1, Canada†School of Accounting and Finance, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1, Canada)

  • ADAM W. KOLKIEWICZ

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1, Canada)

Abstract

This paper studies a stochastic conditional duration model running on multiple time scales with the aim of better capturing the dynamics of a duration process of financial transaction data. New Markov chain Monte Carlo (MCMC) algorithms are developed for the model under three distributional assumptions about the innovation of the measurement equation for a two-component model. Simulation results suggest that the proposed model and MCMC method improve in-sample fits and duration forecasts. Most importantly applications to FIAT and IBM duration datasets indicate the existence of at least two factors (or components) governing the dynamics of the financial duration process.

Suggested Citation

  • Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2016. "A Multiscale Stochastic Conditional Duration Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 1-28, December.
  • Handle: RePEc:wsi:afexxx:v:11:y:2016:i:04:n:s2010495216500202
    DOI: 10.1142/S2010495216500202
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010495216500202
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    2. Dinghai Xu & John Knight & Tony S. Wirjanto, 2011. "Asymmetric Stochastic Conditional Duration Model--A Mixture-of-Normal Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(3), pages 469-488, Summer.
    3. Griffin, J.E. & Steel, M.F.J., 2010. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November.
    4. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    5. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    6. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    7. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    8. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    10. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
    11. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393.
    14. Dingan Feng, 2004. "Stochastic Conditional Duration Models with "Leverage Effect" for Financial Transaction Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 390-421.
    15. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:afexxx:v:11:y:2016:i:04:n:s2010495216500202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim). General contact details of provider: http://www.worldscinet.com/afe/afe.shtml .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.