IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/28_13.html
   My bibliography  Save this paper

Bayesian Inference of Asymmetric Stochastic Conditional Duration Models

Author

Listed:
  • Zhongxian Men

    (Department of Statistics & Actuarial Science, University of Waterloo, Canada)

  • Adam W. Kolkiewicz

    (Department of Statistics & Actuarial Science, University of Waterloo, Canada)

  • Tony S. Wirjanto

    () (Department of Statistics & Actuarial Science, University of Waterloo, Canada)

Abstract

This paper extends stochastic conditional duration (SCD) models for financial transaction data to allow for correlation between error processes or innovations of observed duration process and latent log duration process. Novel algorithms of Markov Chain Monte Carlo (MCMC) are developed to fit the resulting SCD models under various distributional assumptions about the innovation of the measurement equation. Unlike the estimation methods commonly used to estimate the SCD models in the literature, we work with the original specification of the model, without subjecting the observation equation to a logarithmic transformation. Results of simulation studies suggest that our proposed models and corresponding estimation methodology perform quite well. We also apply an auxiliary particle filter technique to construct one-step-ahead in-sample and out-of-sample duration forecasts of the fitted models. Applications to the IBM transaction data allows comparison of our models and methods to those existing in the literature.

Suggested Citation

  • Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2013. "Bayesian Inference of Asymmetric Stochastic Conditional Duration Models," Working Paper series 28_13, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:28_13
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp28_13.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dinghai Xu & John Knight & Tony S. Wirjanto, 2011. "Asymmetric Stochastic Conditional Duration Model--A Mixture-of-Normal Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(3), pages 469-488, Summer.
    2. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    3. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    6. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    7. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    8. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    10. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    11. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    12. Gareth O. Roberts & Jeffrey S. Rosenthal, 1999. "Convergence of Slice Sampler Markov Chains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 643-660.
    13. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    14. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    15. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
    16. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    17. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Stochastic Duration; Bayesian Inference; Markov Chain Monte Carlo; Leverage Effect; Acceptance-rejection; Slice Sampler;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:28_13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.