IDEAS home Printed from https://ideas.repec.org/f/pga689.html

Some searches may not work properly. We apologize for the inconvenience.

   My authors  Follow this author

Fausto Galli

Personal Details

First Name:Fausto
Middle Name:
Last Name:Galli
Suffix:
RePEc Short-ID:pga689
http://www.unisa.it/docenti/faustogalli/index
Terminal Degree:2009 Center for Operations Research and Econometrics (CORE); Louvain Institute of Data Analysis and Modelling in Economics and Statistics (LIDAM); Université Catholique de Louvain (from RePEc Genealogy)

Affiliation

(50%) Dipartimento di Scienze Economiche e Statistiche (DISES)
Università degli Studi di Salerno

Fisciano, Italy
http://www.dises.unisa.it/
RePEc:edi:dssalit (more details at EDIRC)

(50%) Centro di Economia del Lavoro e di Politica Economica (CELPE)
Università degli Studi di Salerno

Fisciano, Italy
http://www.celpe.unisa.it/
RePEc:edi:cesalit (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54030, University Library of Munich, Germany.
  2. Fausto Galli & Giuseppe Russo, 2013. "Immigration Restriction and Long-Run Cultural Assimilation: Theory and Quasi-Experimental Evidence," CSEF Working Papers 349, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  3. BAUWENS, Luc & GALLI, Fausto, 2007. "Efficient importance sampling for ML estimation of SCD models," LIDAM Discussion Papers CORE 2007053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. COSMA, Antonio & GALLI, Fausto, 2006. "A nonparametric ACD model," LIDAM Discussion Papers CORE 2006067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. BAUWENS, Luc & GALLI, Fausto & GIOT, Pierre, 2003. "The moments of Log-ACD models," LIDAM Discussion Papers CORE 2003011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

Articles

  1. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54030, University Library of Munich, Germany.

    Cited by:

    1. Xinyu Wu & Haibin Xie, 2019. "Volatility forecasting using stochastic conditional range model with leverage effect," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(5), pages 1156-1170, September.

  2. Fausto Galli & Giuseppe Russo, 2013. "Immigration Restriction and Long-Run Cultural Assimilation: Theory and Quasi-Experimental Evidence," CSEF Working Papers 349, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.

    Cited by:

    1. Antman, Francisca M. & Duncan, Brian & Trejo, Stephen, 2020. "Ethnic Attrition, Assimilation, and the Measured Health Outcomes of Mexican Americans," IZA Discussion Papers 12952, Institute of Labor Economics (IZA).
    2. Vernon, Victoria & Zimmermann, Klaus F., 2020. "Walls and Fences: A Journey Through History and Economics," GLO Discussion Paper Series 330 [pre.], Global Labor Organization (GLO).

  3. BAUWENS, Luc & GALLI, Fausto, 2007. "Efficient importance sampling for ML estimation of SCD models," LIDAM Discussion Papers CORE 2007053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Tore Selland KLEPPE & Jun YU & Hans J. SKAUG, 2009. "Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers 20-2009, Singapore Management University, School of Economics.
    2. Fok, D. & Paap, R. & Franses, Ph.H.B.F., 2002. "Modeling dynamic effects of promotion on interpurchase times," Econometric Institute Research Papers EI 2002-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Bekierman Jeremias & Gribisch Bastian, 2016. "Estimating stochastic volatility models using realized measures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 279-300, June.
    4. Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
    5. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper series 29_13, Rimini Centre for Economic Analysis.
    6. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54841, University Library of Munich, Germany.
    8. Jean-François Richard, 2015. "Likelihood Evaluation of High-Dimensional Spatial Latent Gaussian Models with Non-Gaussian Response Variables," Working Paper 5778, Department of Economics, University of Pittsburgh.
    9. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2013. "Bayesian Inference of Multiscale Stochastic Conditional Duration Models," Working Paper series 63_13, Rimini Centre for Economic Analysis.
    10. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2016. "A Multiscale Stochastic Conditional Duration Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 1-28, December.
    11. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    12. Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
    13. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54030, University Library of Munich, Germany.
    14. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
    15. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    16. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    17. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2013. "Bayesian Inference of Asymmetric Stochastic Conditional Duration Models," Working Paper series 28_13, Rimini Centre for Economic Analysis.

  4. COSMA, Antonio & GALLI, Fausto, 2006. "A nonparametric ACD model," LIDAM Discussion Papers CORE 2006067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Patrick W. Saart & Jiti Gao & David E. Allen, 2015. "Semiparametric Autoregressive Conditional Duration Model: Theory and Practice," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 849-881, December.

  5. BAUWENS, Luc & GALLI, Fausto & GIOT, Pierre, 2003. "The moments of Log-ACD models," LIDAM Discussion Papers CORE 2003011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Australasian Meetings 272, Econometric Society.
    2. Simonsen, Ola, 2005. "An Empirical Model for Durations in Stocks," Umeå Economic Studies 657, Umeå University, Department of Economics.
    3. Helton Saulo & Narayanaswamy Balakrishnan & Roberto Vila, 2021. "On a quantile autoregressive conditional duration model applied to high-frequency financial data," Papers 2109.03844, arXiv.org.
    4. Hautsch, Nikolaus, 2007. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," CFS Working Paper Series 2007/25, Center for Financial Studies (CFS).
    5. Feng, Yuanhua & Zhou, Chen, 2015. "Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD," International Journal of Forecasting, Elsevier, vol. 31(2), pages 349-363.
    6. Simonsen, Ola, 2006. "The Impact of News Releases on Trade Durations in Stocks -Empirical Evidence from Sweden," Umeå Economic Studies 688, Umeå University, Department of Economics.
    7. Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2019. "Realized variance modeling: decoupling forecasting from estimation," Econometrics Working Papers Archive 2019_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    8. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 122, Paderborn University, CIE Center for International Economics.
    9. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    10. Ola Simonsen, 2007. "An empirical model for durations in stocks," Annals of Finance, Springer, vol. 3(2), pages 241-255, March.
    11. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    12. Aerambamoorthy Thavaneswaran & Nalini Ravishanker & You Liang, 2015. "Generalized duration models and optimal estimation using estimating functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 129-156, February.
    13. Francq, Christian & Wintenberger, Olivier & Zakoïan, Jean-Michel, 2013. "GARCH models without positivity constraints: Exponential or log GARCH?," Journal of Econometrics, Elsevier, vol. 177(1), pages 34-46.
    14. Simonsen, Ola, 2006. "Stock Data, Trade Durations, And Limit Order Book Information," Umeå Economic Studies 689, Umeå University, Department of Economics.
    15. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 125, Paderborn University, CIE Center for International Economics.
    16. Katarzyna Bień-Barkowska, 2011. "Multistate asymmetric ACD model: an application to order dynamics in the EUR/PLN spot market," NBP Working Papers 104, Narodowy Bank Polski.
    17. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2010. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," SFB 649 Discussion Papers SFB649DP2010-055, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    18. Jan Beran & Yuanhua Feng & Sucharita Ghosh, 2015. "Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models," Statistical Papers, Springer, vol. 56(2), pages 431-451, May.
    19. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Far Eastern Meetings 730, Econometric Society.
    20. Yuanhua Feng & Jan Beran & Sebastian Letmathe & Sucharita Ghosh, 2020. "Fractionally integrated Log-GARCH with application to value at risk and expected shortfall," Working Papers CIE 137, Paderborn University, CIE Center for International Economics.

Articles

  1. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    See citations under working paper version above.Sorry, no citations of articles recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 4 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (3) 2007-09-30 2014-03-15 2014-03-15
  2. NEP-INT: International Trade (1) 2013-12-29
  3. NEP-MIG: Economics of Human Migration (1) 2013-12-29
  4. NEP-ORE: Operations Research (1) 2014-03-15

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Fausto Galli should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.