An Assessment of Alternative State Space Models for Count Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- J. Durbin & S. J. Koopman, 2000.
"Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Discussion Paper 1998-142, Tilburg University, Center for Economic Research.
- Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
- Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
- B.P.M. McCabe & G.M. Martin & R.K. Freeland, 2004.
"Testing for Dependence in Non-Gaussian Time Series Data,"
Monash Econometrics and Business Statistics Working Papers
13/04, Monash University, Department of Econometrics and Business Statistics.
- Keith Freeland & Brendan McCabe & Gael Martin, 2004. "Testing for Dependence in Non-Gaussian Time Series Data," Econometric Society 2004 Australasian Meetings 313, Econometric Society.
- Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006.
"Bayesian analysis of the stochastic conditional duration model,"
Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
- Chris M. Strickland & Catherine S. Forbes & Gael M. Martin, 2003. "Bayesian Analysis of the Stochastic Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 14/03, Monash University, Department of Econometrics and Business Statistics.
- Harvey,Andrew C., 1991.
"Forecasting, Structural Time Series Models and the Kalman Filter,"
Cambridge Books,
Cambridge University Press, number 9780521405737, October.
- Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, October.
- Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
- Sylvia FrüHwirth-Schnatter & Helga Wagner, 2006. "Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling," Biometrika, Biometrika Trust, vol. 93(4), pages 827-841, December.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Neil Shephard, 1995. "Generalized linear autoregressions," Economics Papers 8., Economics Group, Nuffield College, University of Oxford.
- Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
- BAUWENS, Luc & VEREDAS, David, 1999.
"The stochastic conditional duration model: a latent factor model for the analysis of financial durations,"
LIDAM Discussion Papers CORE
1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
- McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
- Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Bauwens, Luc & Veredas, David, 2004.
"The stochastic conditional duration model: a latent variable model for the analysis of financial durations,"
Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
- BAUWENS, Luc & VEREDAS, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," LIDAM Reprints CORE 1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
- Heinen, Andreas, 2003.
"Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model,"
MPRA Paper
8113, University Library of Munich, Germany.
- HEINEN, Andréas, 2003. "Modelling time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
- Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
- HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Rong Zhu & Harry Joe, 2006. "Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 725-738, September.
- Gary K. Grunwald & Kais Hamza & Rob J. Hyndman, 1997. "Some Properties and Generalizations of Non‐negative Bayesian Time Series Models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 615-626.
- Scott I. White & Adam E. Clements & Stan Hurn, 2004. "Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility," Econometric Society 2004 Australasian Meetings 46, Econometric Society.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
- Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
- Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008.
"Parameterisation and efficient MCMC estimation of non-Gaussian state space models,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
- Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006.
"Bayesian analysis of the stochastic conditional duration model,"
Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
- Chris M. Strickland & Catherine S. Forbes & Gael M. Martin, 2003. "Bayesian Analysis of the Stochastic Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 14/03, Monash University, Department of Econometrics and Business Statistics.
- Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
- Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
- Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009.
"Monitoring processes with changing variances,"
International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
- J. Keith Ord & Rob J. Hyndman & Anne B. Koehler & Ralph D. Snyder, 2008. "Monitoring Processes with Changing Variances," Monash Econometrics and Business Statistics Working Papers 4/08, Monash University, Department of Econometrics and Business Statistics.
- J. Keith Ord, 2008. "Monitoring Processes with Changing Variances," Working Papers 2008-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Axel Groß‐KlußMann & Nikolaus Hautsch, 2013.
"Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
- Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "Predicting bid-ask spreads using long memory autoregressive conditional poisson models," SFB 649 Discussion Papers 2011-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
- Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
- Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
- Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
- Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
- repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
- Bauwens, L. & Galli, F., 2009.
"Efficient importance sampling for ML estimation of SCD models,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
- Luc, BAUWENS & Fausto Galli, 2007. "Efficient importance sampling for ML estimation of SCD models," Discussion Papers (ECON - Département des Sciences Economiques) 2007032, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & GALLI, Fausto, 2007. "Efficient importance sampling for ML estimation of SCD models," LIDAM Discussion Papers CORE 2007053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & GALLI, Fausto, 2009. "Efficient importance sampling for ML estimation of SCD models," LIDAM Reprints CORE 2088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
More about this item
Keywords
Discrete state-space model; single source of error model; hidden Markov;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2007-05-12 (Econometrics)
- NEP-ETS-2007-05-12 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2007-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.