IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/1995-4.html

Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models

Author

Listed:
  • Ord, J.K.
  • Koehler, A.
  • Snyder, R.D.

Abstract

A class of dynamic, nonlinear, statistical models is introduced for the analysis of univariate time series. A distinguishing feature of the models is their reliance on only one primary source of randomness: a sequence of independent and identically distributed normal disturbances. It is established that the models are conditionally Gaussian. This fact is used to define a conditional maximum likelihood method of estimation and prediction. A particular member of the class is shown to provide the statistical foundations for the multiplicative Holt-Winters method of forecasting. This knowledge is exploited to provide methods for computing prediction intervals to accompany the more usual point predictions obtained from the Holt-Winters method. The methods of estimation and prediction are evaluated by simulation. They are also illustrated with an application to Canadian retail sales.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1995-4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1995-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.