IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v28y2012i2p485-496.html
   My bibliography  Save this article

Forecasting the intermittent demand for slow-moving inventories: A modelling approach

Author

Listed:
  • Snyder, Ralph D.
  • Ord, J. Keith
  • Beaumont, Adrian

Abstract

Organizations with large-scale inventory systems typically have a large proportion of items for which demand is intermittent and low volume. We examine various different approaches to demand forecasting for such products, paying particular attention to the need for inventory planning over a multi-period lead-time when the underlying process may be non-stationary. This emphasis leads to the consideration of prediction distributions for processes with time-dependent parameters. A wide range of possible distributions could be considered, but we focus upon the Poisson (as a widely used benchmark), the negative binomial (as a popular extension of the Poisson), and a hurdle shifted Poisson (which retains Croston’s notion of a Bernoulli process for the occurrence of active demand periods). We also develop performance measures which are related to the entire prediction distribution, rather than focusing exclusively upon point predictions. The three models are compared using data on the monthly demand for 1046 automobile parts, provided by a US automobile manufacturer. We conclude that inventory planning should be based upon dynamic models using distributions that are more flexible than the traditional Poisson scheme.

Suggested Citation

  • Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
  • Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:485-496
    DOI: 10.1016/j.ijforecast.2011.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000781
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Neil Shephard, 1995. "Generalized linear autoregressions," Economics Papers 8., Economics Group, Nuffield College, University of Oxford.
    3. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    4. Snyder, Ralph, 2002. "Forecasting sales of slow and fast moving inventories," European Journal of Operational Research, Elsevier, vol. 140(3), pages 684-699, August.
    5. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    6. HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," CORE Discussion Papers 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    8. Keith Ord & Ralph Snyder & Adrian Beaumont, 2010. "Forecasting the Intermittent Demand for Slow-Moving Items," Monash Econometrics and Business Statistics Working Papers 12/10, Monash University, Department of Econometrics and Business Statistics.
    9. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    10. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    11. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    12. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    13. Rob J. Hyndman & Lydia Shenstone, 2005. "Stochastic models underlying Croston's method for intermittent demand forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
    14. P. Frevert, 1971. "Note," Review of Economic Studies, Oxford University Press, vol. 38(2), pages 269-270.
    15. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    16. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    17. P. J. Harrison, 1967. "Exponential Smoothing and Short-Term Sales Forecasting," Management Science, INFORMS, vol. 13(11), pages 821-842, July.
    18. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    19. Johnston, F. R. & Boylan, J. E., 1996. "Forecasting intermittent demand: A comparative evaluation of croston's method. Comment," International Journal of Forecasting, Elsevier, vol. 12(2), pages 297-298, June.
    20. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    21. Snyder, R.D. & Koehler, A.B. & Ord, J.K., 1998. "Lead Time demand for Simple Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 13/98, Monash University, Department of Econometrics and Business Statistics.
    22. Willemain, Thomas R. & Smart, Charles N. & Shockor, Joseph H. & DeSautels, Philip A., 1994. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," International Journal of Forecasting, Elsevier, vol. 10(4), pages 529-538, December.
    23. Willemain, Thomas R. & Smart, Charles N. & Schwarz, Henry F., 2004. "A new approach to forecasting intermittent demand for service parts inventories," International Journal of Forecasting, Elsevier, vol. 20(3), pages 375-387.
    24. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E., 2010. "Judging the judges through accuracy-implication metrics: The case of inventory forecasting," International Journal of Forecasting, Elsevier, vol. 26(1), pages 134-143, January.
    25. HEINEN, Andréas, 2003. "Modelling time series count data: an autoregressive conditional Poisson model," CORE Discussion Papers 2003062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Gardner, Everette Jr. & Koehler, Anne B., 2005. "Comments on a patented bootstrapping method for forecasting intermittent demand," International Journal of Forecasting, Elsevier, vol. 21(3), pages 617-618.
    27. Muhammad Akram & Rob J Hyndman & J. Keith Ord, 2008. "Exponential smoothing and non-negative data," Working Papers 2008-003, The George Washington University, Department of Economics, Research Program on Forecasting.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wsi:apjorx:v:34:y:2017:i:04:n:s021759591750021x is not listed on IDEAS
    2. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    3. Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
    4. Hahn, G.J. & Leucht, A., 2015. "Managing inventory systems of slow-moving items," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 543-550.
    5. Ralph Snyder & Adrian Beaumont & J. Keith Ord, 2012. "Intermittent demand forecasting for inventory control: A multi-series approach," Monash Econometrics and Business Statistics Working Papers 15/12, Monash University, Department of Econometrics and Business Statistics.
    6. repec:eee:ejores:v:263:y:2017:i:2:p:412-418 is not listed on IDEAS
    7. Beaumont, Adrian N., 2014. "Data transforms with exponential smoothing methods of forecasting," International Journal of Forecasting, Elsevier, vol. 30(4), pages 918-927.
    8. Roman Frigg & Seamus Bradley & Hailiang Du & Leonard A. Smith, "undated". "Laplace�s Demon and Climate Change," GRI Working Papers 103, Grantham Research Institute on Climate Change and the Environment.
    9. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    10. Svetunkov, Ivan & Boylan, John Edward, 2017. "Multiplicative state-space models for intermittent time series," MPRA Paper 82487, University Library of Munich, Germany.
    11. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    12. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    13. Kömm, Holger & Küsters, Ulrich, 2015. "Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 598-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:485-496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.