IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2003025.html
   My bibliography  Save this paper

Multivariate modelling of time series count data: an autoregressive conditional Poisson model

Author

Listed:
  • HEINEN, Andreas
  • RENGIFO, Erick

Abstract

This paper introduces a new multivariate model for time series count data. The Multivariate Autoregressive Conditional Poisson model (MACP) makes it possible to deal with issues of discreteness, overdispersion (variance greater than the mean) and both auto- and cross-correlation. We model counts as Poisson or double Poisson and assume that conditionally on past observations the means follow a Vector Autoregression. We use a copula to introduce contemporaneous correlation between the series. An important advantage of this model is that it can accommodate both positive and negative correlation among variables. As a feasible alternative to multivariate duration models, the model is applied to the submission of market orders and quote revisions on IBM on the New York Stock Exchange. We show that a single factor cannot explain the dynamics of the market process, which confirms that time deformation, taken as meaning that all market events should accelerate or slow down proportionately, does not hold. We advocate the use of the Multivariate Autoregressive Conditional Poisson model for the study of multivariate point processes in finance, when the number of variables considered simultaneously exceeds two and looking at durations becomes too difficult.

Suggested Citation

  • HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," CORE Discussion Papers 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2003025
    as

    Download full text from publisher

    File URL: https://uclouvain.be/en/research-institutes/immaq/core/dp-2003.html
    Download Restriction: no

    References listed on IDEAS

    as
    1. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    4. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    5. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 159-188.
    6. Lee, Charles M C & Ready, Mark J, 1991. " Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurt Brannas & A. M. M. Shahiduzzaman Quoreshi, 2010. "Integer-valued moving average modelling of the number of transactions in stocks," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1429-1440.
    2. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    3. Heinen, Andréas & Rengifo, Erick, 2008. "Multivariate reduced rank regression in non-Gaussian contexts, using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2931-2944, February.
    4. Ivanov, Vladimir & Lewis, Craig M., 2008. "The determinants of market-wide issue cycles for initial public offerings," Journal of Corporate Finance, Elsevier, vol. 14(5), pages 567-583, December.
    5. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    6. Quoreshi, Shahiduzzaman, 2005. "Modelling High Frequency Financial Count Data," Umeå Economic Studies 656, Umeå University, Department of Economics.
    7. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
    8. repec:eee:csdana:v:56:y:2012:i:12:p:4229-4242 is not listed on IDEAS
    9. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    10. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    11. GRAMMIG, Joachim & HEINEN, Andréas & RENGIFO, Erick, 2004. "Trading activity and liquidity supply in a pure limit order book market," CORE Discussion Papers 2004058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Weiß, Christian H. & Schweer, Sebastian, 2016. "Bias corrections for moment estimators in Poisson INAR(1) and INARCH(1) processes," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 124-130.
    13. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    14. Ghahramani, M. & Thavaneswaran, A., 2009. "On some properties of Autoregressive Conditional Poisson (ACP) models," Economics Letters, Elsevier, vol. 105(3), pages 273-275, December.
    15. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
    16. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.

    More about this item

    Keywords

    count data; time series; copula; market microstructure;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2003025. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.