IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/1999044.html
   My bibliography  Save this paper

Time transformations, intraday data and volatility models

Author

Listed:
  • GIOT, Pierre

    () (Center for Operations Research and Econometrics (CORE), Université catholique de Louvain (UCL), Louvain la Neuve, Belgium)

Abstract

In this paper, we focus on the trade and quote data for the IBM stock traded at the NYSE.We present two different frameworks for analyzing this dataset. First, using regularly sampled observations, we characterize the intraday volatility of the mid-point of the bid-ask quotes by estimating GARCH and EGARCH models, with intraday seasonalitybeing accounted for. We also highlight the impact of characteristics of the trade process (traded volume, number of trades and average volume per trade) on the volatility specifications. Secondly, we deal directly with the irregularly spaced data. We review two time transformations that allowa thinning of the original dataset such that new durations are defined. The newly defined price and volume durations are characterized and the performance of the Log-ACD model for modelling these durations is assessed. Moreover, price durations allowan easy computation of intraday volatility and this method compares favorablyto ARCH estimations.

Suggested Citation

  • GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," CORE Discussion Papers 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:1999044
    as

    Download full text from publisher

    File URL: https://uclouvain.be/en/research-institutes/immaq/core/dp-1999.html
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    2. Serge Darolles & Christian Gouriéroux & Gaëlle Le Fol, 2000. "Intraday Transaction Price Dynamics," Annals of Economics and Statistics, GENES, pages 207-238.
    3. Hasbrouck, Joel, 1991. " Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    4. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Dominique M. Guillaume & Olivier V. Pictet & Michel M. Dacorogna, "undated". "On the intra-daily performance of GARCH processes," Working Papers 1994-07-31, Olsen and Associates.
    7. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    8. repec:dau:papers:123456789/12729 is not listed on IDEAS
    9. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    10. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, pages 193-226.
    11. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. " An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    12. Gaëlle Le Fol & Mercier Ludovic, 1998. "Time Deformation: Definition and Comparisons," Post-Print halshs-00586097, HAL.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Jones, Charles M & Kaul, Gautam & Lipson, Marc L, 1994. "Transactions, Volume, and Volatility," Review of Financial Studies, Society for Financial Studies, vol. 7(4), pages 631-651.
    15. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    16. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    17. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 159-188.
    18. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    19. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    20. BAUWENS, Luc & GIOT, Pierre, 1998. "Asymmetric ACD models: introducing price information in ACD models with a two state transition model," CORE Discussion Papers 1998044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    22. Ederington, Louis H & Lee, Jae Ha, 1993. " How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    23. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    24. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    25. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    26. Bollerslev, Tim & Domowitz, Ian, 1993. " Trading Patterns and Prices in the Interbank Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 48(4), pages 1421-1443, September.
    27. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    28. Lee, Charles M C & Ready, Mark J, 1991. " Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    29. C. Hafner, 1997. "Estimating High Frequency Foreign Exchange Rate Volatility with Nonparametric ARCH Models," SFB 373 Discussion Papers 1997,18, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    30. Eric Ghysels & Joanna Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, pages 589-609.
    2. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," CORE Discussion Papers 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Filip Zikes & Vít Bubák, 2006. "Trading Intensity and Intraday Volatility on the Prague Stock Exchange: Evidence from an Autoregressive Conditional Duration Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(5-6), pages 223-245, May.
    4. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, pages 1-23.
    5. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, pages 35-68.
    6. Xiaodong Jin & Janusz Kawczak, 2003. "Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 103-124, May.
    7. Fatima Sol Murta, 2007. "The Money Market Daily Session :an UHF-GARCH Model Applied to the Portuguese Case Before and After the Introduction Of the Minimum Reserve System of the Single Monetary Policy," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 50(3), pages 285-314.
    8. Takayuki Morimoto, 2004. "Estimating and forecasting instantaneous volatility through a duration model : An assessment based on VaR," Econometric Society 2004 Far Eastern Meetings 592, Econometric Society.
    9. Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, vol. 30(4), pages 867-887, January.
    10. Steland, Ansgar, 2004. "NP-optimal kernels for nonparametric sequential detection rules," Technical Reports 2004,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Matos, João Manuel Gonçalves Amaro de & Fernandes, Marcelo, 2001. "Testing the Markov property with ultra high frequency financial data," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 414, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
    12. GIOT, Pierre, 2000. "Intraday value-at-risk," CORE Discussion Papers 2000045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    14. Katarzyna Bien-Barkowska, 2011. "Distribution Choice for the Asymmetric ACD Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 55-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1999044. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.