IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/1460.html
   My bibliography  Save this paper

Constrainted Optimization Approaches to Estimation of Structural Models

Author

Listed:
  • Che-Lin Su
  • Kenneth L. Judd

Abstract

Maximum likelihood estimation of structural models is often viewed as computationally difficult. This impression is due to a focus on the Nested Fixed-Point approach. We present a direct optimization approach to the general problem and show that it is significantly faster than the NFXP approach when applied to the canonical Zurcher bus repair model. The NFXP approach is inappropriate for estimating games since it requires finding all Nash equilibria of a game for each parameter vector considered, a generally intractable computational problem. We formulate the problem of maximum likelihood estimation of games as a constrained optimization problem that is qualitatively no more difficult to solve than standard maximum likelihood problems. The direct optimization approach is also applicable to other structural estimation methods such as methods of moments, and also allows one to use computationally intensive bootstrap methods to calculate inference. The MPEC approach is also easily implemented on software with high-level interfaces. Furthermore, all the examples in this paper were computed using only free resources available on the web.

Suggested Citation

  • Che-Lin Su & Kenneth L. Judd, 2008. "Constrainted Optimization Approaches to Estimation of Structural Models," Discussion Papers 1460, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:1460
    as

    Download full text from publisher

    File URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1085394
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    Constrained Optimization; Structural Estimation; Maximum Likelihood Estimation; Games with Multiple Equilibria;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.