IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/26-12.html
   My bibliography  Save this paper

Averaging of moment condition estimators

Author

Listed:
  • Xiaohong Chen

    () (Institute for Fiscal Studies and Yale University)

  • David Jacho-Chávez

    (Institute for Fiscal Studies)

  • Oliver Linton

    () (Institute for Fiscal Studies and University of Cambridge)

Abstract

We establish the consistency and asymptotic normality for a class of estimators that are linear combinations of a set of vn- consistent estimators whose cardinality increases with sample size. A special case of our framework corresponds to the conditional moment restriction and the implied estimator in that case is shown to achieve the semiparametric efficiency bound. The proofs do not rely on smoothness of underlying criterion functions.

Suggested Citation

  • Xiaohong Chen & David Jacho-Chávez & Oliver Linton, 2012. "Averaging of moment condition estimators," CeMMAP working papers CWP26/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:26/12
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp261212.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    2. Koenker, Roger & Machado, Jose A. F., 1999. "GMM inference when the number of moment conditions is large," Journal of Econometrics, Elsevier, vol. 93(2), pages 327-344, December.
    3. Guido Kuersteiner & Ryo Okui, 2010. "Constructing Optimal Instruments by First-Stage Prediction Averaging," Econometrica, Econometric Society, vol. 78(2), pages 697-718, March.
    4. Kotlyarova, Yulia & Zinde-Walsh, Victoria, 2006. "Non- and semi-parametric estimation in models with unknown smoothness," Economics Letters, Elsevier, vol. 93(3), pages 379-386, December.
    5. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    6. Francesco Bravo & Juan Carlos Escanciano & Taisuke Otsu, 2011. "A Simple Test for Identification in GMM under Conditional Moment Restrictions," Cowles Foundation Discussion Papers 1789, Cowles Foundation for Research in Economics, Yale University.
    7. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    8. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
    9. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
    10. Inoue, Atsushi & Rossi, Barbara, 2011. "Testing for weak identification in possibly nonlinear models," Journal of Econometrics, Elsevier, vol. 161(2), pages 246-261, April.
    11. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    12. Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2010. "Smoothness adaptive average derivative estimation," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 40-62, February.
    13. Rilstone, Paul & Ullah, Aman, 2005. "Corrigendum to "The second-order bias and mean squared error of nonlinear estimators": [Journal of Econometrics 75(2) (1996) 369-395]," Journal of Econometrics, Elsevier, vol. 124(1), pages 203-204, January.
    14. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martins, Luis F. & Gabriel, Vasco J., 2014. "Linear instrumental variables model averaging estimation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 709-724.

    More about this item

    Keywords

    Instrumental Variables; Minimum Distance; Semiparametric Efficiency; Two-Stage Least Squares;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:26/12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.