IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.05232.html
   My bibliography  Save this paper

Solving Dynamic Discrete Choice Models Using Smoothing and Sieve Methods

Author

Listed:
  • Dennis Kristensen
  • Patrick K. Mogensen
  • Jong Myun Moon
  • Bertel Schjerning

Abstract

We propose to combine smoothing, simulations and sieve approximations to solve for either the integrated or expected value function in a general class of dynamic discrete choice (DDC) models. We use importance sampling to approximate the Bellman operators defining the two functions. The random Bellman operators, and therefore also the corresponding solutions, are generally non-smooth which is undesirable. To circumvent this issue, we introduce a smoothed version of the random Bellman operator and solve for the corresponding smoothed value function using sieve methods. We show that one can avoid using sieves by generalizing and adapting the `self-approximating' method of Rust (1997) to our setting. We provide an asymptotic theory for the approximate solutions and show that they converge with root-N-rate, where $N$ is number of Monte Carlo draws, towards Gaussian processes. We examine their performance in practice through a set of numerical experiments and find that both methods perform well with the sieve method being particularly attractive in terms of computational speed and accuracy.

Suggested Citation

  • Dennis Kristensen & Patrick K. Mogensen & Jong Myun Moon & Bertel Schjerning, 2019. "Solving Dynamic Discrete Choice Models Using Smoothing and Sieve Methods," Papers 1904.05232, arXiv.org, revised Feb 2020.
  • Handle: RePEc:arx:papers:1904.05232
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.05232
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andriy Norets, 2010. "Continuity and differentiability of expected value functions in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 1(2), pages 305-322, November.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    4. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    5. Andriy Norets, 2012. "Estimation of Dynamic Discrete Choice Models Using Artificial Neural Network Approximations," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 84-106.
    6. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    7. Fermanian, Jean-David & Salanié, Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(4), pages 701-734, August.
    8. repec:spr:compst:v:77:y:2013:i:3:p:407-421 is not listed on IDEAS
    9. Yongyang Cai & Kenneth Judd, 2013. "Shape-preserving dynamic programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 407-421, June.
    10. Robin L. Lumsdaine & James H. Stock & David A. Wise, 1992. "Three Models of Retirement: Computational Complexity versus Predictive Validity," NBER Chapters, in: Topics in the Economics of Aging, pages 21-60, National Bureau of Economic Research, Inc.
    11. Van Than Dung & Tegoeh Tjahjowidodo, 2017. "A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
    12. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    13. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    14. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    15. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    16. John Rust, 1997. "A Comparison of Policy Iteration Methods for Solving Continuous-State, Infinite-Horizon Markovian Decision Problems Using Random, Quasi-random, and Deterministic Discretizations," Computational Economics 9704001, University Library of Munich, Germany.
    17. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    18. J. Rust & J. F. Traub & H. Wozniakowski, 2002. "Is There a Curse of Dimensionality for Contraction Fixed Points in the Worst Case?," Econometrica, Econometric Society, vol. 70(1), pages 285-329, January.
    19. David A. Wise, 1992. "Topics in the Economics of Aging," NBER Books, National Bureau of Economic Research, Inc, number wise92-1.
    20. Fedor Iskhakov & Thomas H. Jørgensen & John Rust & Bertel Schjerning, 2017. "The endogenous grid method for discrete‐continuous dynamic choice models with (or without) taste shocks," Quantitative Economics, Econometric Society, vol. 8(2), pages 317-365, July.
    21. Pál, Jenő & Stachurski, John, 2013. "Fitted value function iteration with probability one contractions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 251-264.
    22. Johannes Brumm & Simon Scheidegger, 2017. "Using Adaptive Sparse Grids to Solve High‐Dimensional Dynamic Models," Econometrica, Econometric Society, vol. 85, pages 1575-1612, September.
    23. Chen, Victoria C. P., 1999. "Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 317-341, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Luo & Peijun Sang, 2022. "Penalized Sieve Estimation of Structural Models," Papers 2204.13488, arXiv.org.
    2. Jackson Bunting, 2022. "Continuous permanent unobserved heterogeneity in dynamic discrete choice models," Papers 2202.03960, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    2. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jul 2020.
    3. Pietola, Kyosti & Vare, Minna & Oude Lansink, Alfons G.J.M., 2002. "Farmers' Exit Decisions and Early Retirement Programs in Finland," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24825, European Association of Agricultural Economists.
    4. Lee, Donghoon & Song, Kyungchul, 2015. "Simulated maximum likelihood estimation for discrete choices using transformed simulated frequencies," Journal of Econometrics, Elsevier, vol. 187(1), pages 131-153.
    5. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    6. John Rust & Christopher Phelan, 1997. "How Social Security and Medicare Affect Retirement Behavior in a World of Incomplete Markets," Econometrica, Econometric Society, vol. 65(4), pages 781-832, July.
    7. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    8. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    9. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    10. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    11. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    12. Michael Creel & Dennis Kristensen, 2013. "Indirect Likelihood Inference (revised)," UFAE and IAE Working Papers 931.13, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    13. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
    14. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    15. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    16. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    17. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    18. Hull, Isaiah & Sattath, Or & Diamanti, Eleni & Wendin, Göran, 2020. "Quantum Technology for Economists," Working Paper Series 398, Sveriges Riksbank (Central Bank of Sweden).
    19. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    20. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.05232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.