IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain

  • Judd, Kenneth L.
  • Maliar, Lilia
  • Maliar, Serguei
  • Valero, Rafael

We show how to enhance the performance of a Smolyak method for solving dynamic economic models. First, we propose a more efficient implementation of the Smolyak method for interpolation, namely, we show how to avoid costly evaluations of repeated basis functions in the conventional Smolyak formula. Second, we extend the Smolyak method to include anisotropic constructions that allow us to target higher quality of approximation in some dimensions than in others. Third, we show how to effectively adapt the Smolyak hypercube to a solution domain of a given economic model. Finally, we argue that in large-scale economic applications, a solution algorithm based on Smolyak interpolation has substantially lower expense when it uses derivative-free fixed-point iteration instead of standard time iteration. In the context of one- and multi-agent optimal growth models, we find that the proposed modifications to the conventional Smolyak method lead to substantial increases in accuracy and speed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0165188914000621
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 44 (2014)
Issue (Month): C ()
Pages: 92-123

as
in new window

Handle: RePEc:eee:dyncon:v:44:y:2014:i:c:p:92-123
Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Huggett, Mark, 1993. "The risk-free rate in heterogeneous-agent incomplete-insurance economies," Journal of Economic Dynamics and Control, Elsevier, vol. 17(5-6), pages 953-969.
  2. Serguei Maliar & Lilia Maliar & Kenneth L. Judd, 2010. "Solving the Multi-Country Real Business Cycle Model Using Ergodic Set Methods," NBER Working Papers 16304, National Bureau of Economic Research, Inc.
  3. Carroll, Christopher D., 2005. "The method of endogenous gridpoints for solving dynamic stochastic optimization problems," CFS Working Paper Series 2005/18, Center for Financial Studies (CFS).
  4. Lawrence J. Christiano & Jonas D. M. Fisher, 1994. "Algorithms for solving dynamic models with occasionally binding constraints," Staff Report 171, Federal Reserve Bank of Minneapolis.
  5. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
  6. S. Rao Aiyagari, 1993. "Uninsured idiosyncratic risk and aggregate saving," Working Papers 502, Federal Reserve Bank of Minneapolis.
  7. Marcet, Albert & Sargent, Thomas J, 1989. "Convergence of Least-Squares Learning in Environments with Hidden State Variables and Private Information," Journal of Political Economy, University of Chicago Press, vol. 97(6), pages 1306-22, December.
  8. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2012. "Merging simulation and projection approaches to solve high-dimensional problems," Working Papers. Serie AD 2012-20, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  9. Malin, Benjamin A. & Krueger, Dirk & Kubler, Felix, 2011. "Solving the multi-country real business cycle model using a Smolyak-collocation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 229-239, February.
  10. Krusell, P & Smith Jr, A-A, 1995. "Income and Wealth Heterogeneity in the Macroeconomic," RCER Working Papers 399, University of Rochester - Center for Economic Research (RCER).
  11. Viktor Winschel, 2005. "Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality," GE, Growth, Math methods 0507014, EconWPA.
  12. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2011. "Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models," Working Papers. Serie AD 2011-15, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  13. Lilia Maliar & Serguei Maliar, 2013. "Envelope condition method versus endogenous grid method for solving dynamic programming problems," Working Papers. Serie AD 2013-07, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  14. Tauchen, George & Hussey, Robert, 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models," Econometrica, Econometric Society, vol. 59(2), pages 371-96, March.
  15. Jesús Fernández-Villaverde & Grey Gordon & Pablo Guerrón-Quintana & Juan F. Rubio-Ramírez, 2012. "Nonlinear adventures at the zero lower bound," Working Papers 12-10, Federal Reserve Bank of Philadelphia.
  16. John Rust & Department of Economics & University of Wisconsin, 1994. "Using Randomization to Break the Curse of Dimensionality," Computational Economics 9403001, EconWPA, revised 04 Jul 1994.
  17. Miranda, Mario J & Helmberger, Peter G, 1988. "The Effects of Commodity Price Stabilization Programs," American Economic Review, American Economic Association, vol. 78(1), pages 46-58, March.
  18. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(01), pages 45-75, January.
  19. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S63-84, Suppl. De.
  20. S. Boragan Aruoba & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez, 2003. "Comparing Solution Methods for Dynamic Equilibrium Economies," PIER Working Paper Archive 04-003, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  21. Viktor Winschel & Markus Kr‰tzig, 2010. "Solving, Estimating, and Selecting Nonlinear Dynamic Models Without the Curse of Dimensionality," Econometrica, Econometric Society, vol. 78(2), pages 803-821, 03.
  22. Dirk Krueger & Felix Kubler, 2006. "Pareto-Improving Social Security Reform when Financial Markets are Incomplete!?," American Economic Review, American Economic Association, vol. 96(3), pages 737-755, June.
  23. Krueger, Dirk & Kubler, Felix, 2004. "Computing equilibrium in OLG models with stochastic production," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1411-1436, April.
  24. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
  25. Ángel Gavilán & Juan A. Rojas, 2009. "Solving Portfolio Problems with the Smolyak-Parameterized Expectations Algorithm," Banco de Espa�a Working Papers 0838, Banco de Espa�a.
  26. Anthony A. Smith, Jr., 1991. "Solving Stochastic Dynamic Programming Problems Using Rules Of Thumb," Working Papers 816, Queen's University, Department of Economics.
  27. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
  28. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:44:y:2014:i:c:p:92-123. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.