IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/200320.html
   My bibliography  Save this paper

Evaluation of Dynamic Stochastic General Equilibrium Models Based on Distributional Comparison of Simulated and Historical Data

Author

Listed:
  • Valentina Corradi

    () (Queen Mary, University of London)

  • Norman R. Swanson

    () (Rutgers University)

Abstract

We take as a starting point the existence of a joint distribution implied by different dynamic stochastic general equilibrium (DSGE) models, all of which are potentially misspecified. Our objective is to compare "true" joint distributions with ones generated by given DSGEs. This is accomplished via the construction of a new tool for comparing the empirical joint distribution of historical time series with the empirical distribution of simulated time series. The tool draws on recent advances in the theory of the bootstrap, Kolmogorov type testing, and other work on the evaluation of DSGEs, aimed at comparing the second order properties of historical and simulated time series. We begin by fixing a given model as the "benchmark" model, against which all "alternative" models are to be compared. Our comparison is done using a distributional generalization of White's (2000) reality check. In particular, we test whether at least one of the alternative models provides a more "accurate" approximation to the true cumulative distribution than does the benchmark model. Accuracy is measured in terms of distributional square error. As the data are simulated using estimated parameters (as well as previously calibrated parameters), the limiting distribution of the test statistic is a Gaussian process with a covariance kernel that reflects the contribution of parameter estimation error. Thus, the limiting distribution is not nuisance parameter free, and critical values cannot be tabulated. In order to address this issue, we show the validity of two versions of the block bootstrap in our context. An illustrative example is also given, in which the testing approach is applied to a real business cycle model. It is shown that alternative versions of the model in which calibrated parameters are allowed to vary slightly perform equally well. On the other hand, there are stark differences between models when the shocks driving the models are assigned non-plausible variances and/or distributional assumptions.

Suggested Citation

  • Valentina Corradi & Norman R. Swanson, 2003. "Evaluation of Dynamic Stochastic General Equilibrium Models Based on Distributional Comparison of Simulated and Historical Data," Departmental Working Papers 200320, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:200320
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2003-20.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 433-451.
    2. Corradi, Valentina & Swanson, Norman R., 2007. "Evaluation of dynamic stochastic general equilibrium models based on distributional comparison of simulated and historical data," Journal of Econometrics, Elsevier, vol. 136(2), pages 699-723, February.
    3. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    4. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    5. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    6. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    7. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    8. Yongsung Chang & Joao F. Gomes & Frank Schorfheide, 2002. "Learning-by-Doing as a Propagation Mechanism," American Economic Review, American Economic Association, vol. 92(5), pages 1498-1520, December.
    9. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    10. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 153-173, Suppl. De.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    13. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    14. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    15. Bierens, Herman J. & Swanson, Norman R., 2000. "The econometric consequences of the ceteris paribus condition in economic theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 223-253, April.
    16. Valentina Corradi & Norman R. Swanson, 2003. "A Test for Comparing Multiple Misspecified Conditional Distributions," Departmental Working Papers 200314, Rutgers University, Department of Economics.
    17. Bierens, Herman J., 2007. "Econometric analysis of linearized singular dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 136(2), pages 595-627, February.
    18. Long, John B, Jr & Plosser, Charles I, 1983. "Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 91(1), pages 39-69, February.
    19. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
    20. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    21. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marmer, Vadim & Otsu, Taisuke, 2012. "Optimal comparison of misspecified moment restriction models under a chosen measure of fit," Journal of Econometrics, Elsevier, vol. 170(2), pages 538-550.
    2. Rossi, Barbara & Sekhposyan, Tatevik, 2013. "Conditional predictive density evaluation in the presence of instabilities," Journal of Econometrics, Elsevier, vol. 177(2), pages 199-212.
    3. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    4. Swanson, Norman R. & Urbach, Richard, 2015. "Prediction and simulation using simple models characterized by nonstationarity and seasonality," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 312-323.
    5. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    6. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    7. Barbara Rossi & Tatevik Sekhposyan, 2014. "Alternative tests for correct specification of conditional predictive densities," Economics Working Papers 1416, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2017.
    8. Corradi, Valentina & Swanson, Norman R., 2007. "Evaluation of dynamic stochastic general equilibrium models based on distributional comparison of simulated and historical data," Journal of Econometrics, Elsevier, vol. 136(2), pages 699-723, February.
    9. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    10. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    11. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    12. repec:eee:econom:v:198:y:2017:i:2:p:189-208 is not listed on IDEAS
    13. Corradi, Valentina & Swanson, Norman R., 2011. "Predictive density construction and accuracy testing with multiple possibly misspecified diffusion models," Journal of Econometrics, Elsevier, vol. 161(2), pages 304-324, April.
    14. Norman Swanson & Oleg Korenok, 2006. "How Sticky Is Sticky Enough? A Distributional and Impulse Response Analysis of New Keynesian DSGE Models. Extended Working Paper Version," Departmental Working Papers 200612, Rutgers University, Department of Economics.
    15. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    16. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    17. Patrick Minford & Konstantinos Theodoridis & David Meenagh, 2009. "Testing a Model of the UK by the Method of Indirect Inference," Open Economies Review, Springer, vol. 20(2), pages 265-291, April.
    18. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    19. Michael P. Clements & David F. Hendry, 2005. "Guest Editors' Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    20. Hnatkovska, Viktoria & Marmer, Vadim & Tang, Yao, 2012. "Comparison of misspecified calibrated models: The minimum distance approach," Journal of Econometrics, Elsevier, vol. 169(1), pages 131-138.
    21. repec:hal:journl:peer-00796745 is not listed on IDEAS
    22. Oleg Korenok & Stanislav Radchenko & Norman R. Swanson, 2010. "International evidence on the efficacy of new-Keynesian models of inflation persistence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 31-54.
    23. Bhardwaj, Geetesh & Corradi, Valentina & Swanson, Norman R., 2008. "A Simulation-Based Specification Test for Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 176-193, April.

    More about this item

    Keywords

    Real Business Cycles; Output; empirical Distribution; Simulated Models; Model Selection;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:200320. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/derutus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.