IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection

  • Valentina Corradi

    ()

    (Queen Mary, University of London)

  • Norman Swanson

    ()

    (Rutgers University)

In recent years it has become apparent that many of the classical testing procedures used to select amongst alternative economic theories and economic models are not realistic. In particular, researchers have become more aware of the fact that parameter estimation error and data dependence play a crucial role in test statistic limiting distributions, a role which had hitherto been ignored to a large extent. Given the fact that one of the primary ways for comparing di®erent models and theories is via use of predictive accuracy tests, it is perhaps not surprising that a large literature on the topic has developed over the last 10 years, including, for example, important papers by Diebold and Mariano (1995), West (1996), and White (2000). In this literature, it is quite common to compare multiple models (which are possibly all misspeci¯ed - i.e. they are all approximations of some unknown true model) in terms of their out of sample predictive ability, for given loss function. Our objectives in this paper are twofold. First, we introduce block bootstrap techniques that are (first order) valid in recursive estimation frameworks. Thereafter, we present two applications where predictive accuracy tests are made operational using our new bootstrap procedures. One of the applications outlines a consistent test for out-of-sample nonlinear Granger causality, and the other outlines a test for selecting amongst multiple alternative forecasting models, all of which may be viewed as approximations of some unknown underlying model. More speci¯cally, our examples extend the White (2000) reality check to the case of non vanishing parameter estimation error, and extend the integrated conditional moment (ICM) tests of Bierens (1982, 1990) and Bierens and Ploberger (1997) to the case of out-of-sample prediction. Of note is that in both of these examples, it is shown that appropriate re-centering of the bootstrap score is required in order to ensure that the tests are properly sized, and the need for such re-centering is shown to arise quite naturally when testing hypotheses of predictive accuracy. The results of a Monte Carlo investigation of the ICM test suggest that the bootstrap procedure proposed in this paper yield tests with reasonable ¯nite sample properties for samples with as few as 300 observations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://snde.rutgers.edu/Rutgers/wp/2004-18.pdf
Download Restriction: no

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 200418.

as
in new window

Length: 20 pages
Date of creation: 16 Sep 2004
Date of revision:
Handle: RePEc:rut:rutres:200418
Contact details of provider: Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7482
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter F. Christoffersen & Francis X. Diebold, 1997. "Optimal prediction under asymmetric loss," Working Papers 97-11, Federal Reserve Bank of Philadelphia.
  2. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer, vol. 1(2), pages 161-173.
  3. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
  4. Elliott, Graham & Timmermann, Allan G, 2004. "Optimal Forecast Combination Under Regime Switching," CEPR Discussion Papers 4649, C.E.P.R. Discussion Papers.
  5. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  6. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  7. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-71, Sept.-Oct.
  8. Goncalves, Silvia & White, Halbert, 2000. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt1bj657ff, Department of Economics, UC San Diego.
  9. Weiss, Andrew A, 1996. "Estimating Time Series Models Using the Relevant Cost Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 539-60, Sept.-Oct.
  10. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
  11. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  12. Francis X. Diebold & Celia Chen, 1993. "Testing structural stability with endogenous break point: a size comparison of analytic and bootstrap procedures," Working Papers 93-11, Federal Reserve Bank of Philadelphia.
  13. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
  14. Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
  15. repec:cup:macdyn:v:5:y:2001:i:4:p:598-620 is not listed on IDEAS
  16. Donald W.K. Andrews, 2002. "The Block-block Bootstrap: Improved Asymptotic Refinements," Cowles Foundation Discussion Papers 1370, Cowles Foundation for Research in Economics, Yale University.
  17. Filippo Altissimo & Valentina Corradi, 2002. "Bounds for inference with nuisance parameters present only under the alternative," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 494-519, 06.
  18. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  20. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  21. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
  22. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
  23. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
  24. Rossi, Barbara & Inoue, Atsushi, 2003. "Recursive Predictability Tests for Real-Time Data," Working Papers 03-24, Duke University, Department of Economics.
  25. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
  26. Wooldridge, Jeffrey M. & White, Halbert, 1988. "Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 4(02), pages 210-230, August.
  27. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2003. "Consistent testing for stochastic dominance under general sampling schemes," LSE Research Online Documents on Economics 2208, London School of Economics and Political Science, LSE Library.
  28. Norman R. Swanson, 2000. "An Out of Sample Test for Granger Causality," Econometric Society World Congress 2000 Contributed Papers 0362, Econometric Society.
  29. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
  30. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-30, March.
  31. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  32. repec:cup:etheor:v:13:y:1997:i:6:p:808-17 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:200418. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.