IDEAS home Printed from https://ideas.repec.org/p/pen/papers/25-014.html
   My bibliography  Save this paper

Clustering for Multi-Dimensional Heterogeneity with an Application to Production Function Estimation

Author

Listed:
  • Xu Cheng

    (University of Pennsylvania)

  • Frank Schorfheide

    (University of Pennsylvania)

  • Peng Shao

    (Auburn University)

Abstract

This paper studies the estimation of multi-dimensional heterogeneous parameters in a nonlinear panel data model with endogeneity. These heterogeneous parameters are modeled with group patterns. Through estimating multiple memberships for each unit, the proposed method is robust to limited information from a subset of clusters: either due to sparse interactions of characteristics or weak identification of some combinations of heterogeneous parameters. We estimate the memberships along with the group specific and common parameters in a nonlinear GMM framework and derive their large sample properties. Finally, we apply this approach to the estimation of heterogeneous firm-level production functions parameters which are converted into markup estimates.

Suggested Citation

  • Xu Cheng & Frank Schorfheide & Peng Shao, 2025. "Clustering for Multi-Dimensional Heterogeneity with an Application to Production Function Estimation," PIER Working Paper Archive 25-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:25-014
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/system/files/working-papers/25-014%20PIER%20Paper%20Submission.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denis Chetverikov & Elena Manresa, 2022. "Spectral and post-spectral estimators for grouped panel data models," Papers 2212.13324, arXiv.org, revised Dec 2022.
    2. Jan De Loecker & Frederic Warzynski, 2012. "Markups and Firm-Level Export Status," American Economic Review, American Economic Association, vol. 102(6), pages 2437-2471, October.
    3. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    4. Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2022. "Discretizing Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 90(2), pages 625-643, March.
    5. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    6. Iván Fernández‐Val & Joonhwah Lee, 2013. "Panel data models with nonadditive unobserved heterogeneity: Estimation and inference," Quantitative Economics, Econometric Society, vol. 4(3), pages 453-481, November.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Bester, C. Alan & Hansen, Christian B., 2016. "Grouped effects estimators in fixed effects models," Journal of Econometrics, Elsevier, vol. 190(1), pages 197-208.
    9. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    10. Jaumandreu, Jordi & Doraszelski, Ulrich, 2019. "Using Cost Minimization to Estimate Markups," CEPR Discussion Papers 14114, C.E.P.R. Discussion Papers.
    11. Amit Gandhi & Salvador Navarro & David A. Rivers, 2020. "On the Identification of Gross Output Production Functions," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 2973-3016.
    12. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    13. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 42-55, August.
    14. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    15. repec:cdl:ucsdec:qt5tf1231k is not listed on IDEAS
    16. Hahn, Jinyong & Moon, Hyungsik Roger, 2010. "Panel Data Models With Finite Number Of Multiple Equilibria," Econometric Theory, Cambridge University Press, vol. 26(3), pages 863-881, June.
    17. Marc Henry & Yuichi Kitamura & Bernard Salanié, 2014. "Partial identification of finite mixtures in econometric models," Quantitative Economics, Econometric Society, vol. 5, pages 123-144, March.
    18. Krasnokutskaya, Elena & Song, Kyungchul & Tang, Xun, 2022. "Estimating unobserved individual heterogeneity using pairwise comparisons," Journal of Econometrics, Elsevier, vol. 226(2), pages 477-497.
    19. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    20. Laura Liu, 2023. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 349-363, April.
    21. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    22. Jan De Loecker & Jan Eeckhout & Gabriel Unger, 2020. "The Rise of Market Power and the Macroeconomic Implications [“Econometric Tools for Analyzing Market Outcomes”]," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(2), pages 561-644.
    23. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    24. Leng, Xuan & Chen, Heng & Wang, Wendun, 2023. "Multi-dimensional latent group structures with heterogeneous distributions," Journal of Econometrics, Elsevier, vol. 233(1), pages 1-21.
    25. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    26. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    27. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Dzemski & Ryo Okui, 2024. "Confidence set for group membership," Quantitative Economics, Econometric Society, vol. 15(2), pages 245-277, May.
    2. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    3. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.
    4. Pionati, Alessandro, 2025. "Latent grouped structures in panel data: a review," MPRA Paper 123954, University Library of Munich, Germany.
    5. Mikihito Nishi, 2025. "K-Means Panel Data Clustering in the Presence of Small Groups," Papers 2508.15408, arXiv.org.
    6. Leng, Xuan & Chen, Heng & Wang, Wendun, 2023. "Multi-dimensional latent group structures with heterogeneous distributions," Journal of Econometrics, Elsevier, vol. 233(1), pages 1-21.
    7. Emir Malikov & Shunan Zhao & Jingfang Zhang, 2024. "A System Approach to Structural Identification of Production Functions with Multi-Dimensional Productivity," Advances in Econometrics, in: Essays in Honor of Subal Kumbhakar, volume 46, pages 211-263, Emerald Group Publishing Limited.
    8. Paul Haimerl & Stephan Smeekes & Ines Wilms, 2025. "Estimation of Latent Group Structures in Time-Varying Panel Data Models," Papers 2503.23165, arXiv.org.
    9. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    10. Yu Hao & Hiroyuki Kasahara, 2025. "Estimating the Number of Components in Panel Data Finite Mixture Regression Models with an Application to Production Function Heterogeneity," Papers 2506.09666, arXiv.org.
    11. David Van Dijcke, 2022. "On the Non-Identification of Revenue Production Functions," Papers 2212.04620, arXiv.org, revised May 2024.
    12. Amiti, Mary & Duprez, Cédric & Konings, Jozef & Van Reenen, John, 2024. "FDI and superstar spillovers: Evidence from firm-to-firm transactions," Journal of International Economics, Elsevier, vol. 152(C).
    13. Nibbering, D. & Paap, R., 2019. "Panel Forecasting with Asymmetric Grouping," Econometric Institute Research Papers EI-2019-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Miller, Nathan H., 2025. "Industrial organization and The Rise of Market Power," International Journal of Industrial Organization, Elsevier, vol. 98(C).
    15. Gibbon, Alexandra J. & Schain, Jan Philip, 2023. "Rising markups, common ownership, and technological capacities," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    16. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    17. Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    19. Philipp Meinen & Ana Cristina Soares, 2022. "Markups and Financial Shocks," The Economic Journal, Royal Economic Society, vol. 132(647), pages 2471-2499.
    20. van Heuvelen, Gerrit Hugo & Bettendorf, Leon & Meijerink, Gerdien, 2021. "Markups in a dual labour market: The case of the Netherlands," International Journal of Industrial Organization, Elsevier, vol. 77(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:25-014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.