IDEAS home Printed from
   My bibliography  Save this article

On the Identification of Gross Output Production Functions


  • Amit Gandhi
  • Salvador Navarro
  • David A. Rivers


We study the nonparametric identification of gross output production functions under the environment of the commonly employed proxy variable methods. We show that applying these methods to gross output requires additional sources of variation in the demand for flexible inputs (e.g., prices). Using a transformation of the firm’s first-order condition, we develop a new nonparametric identification strategy for gross output that can be employed even when additional sources of variation are not available. Monte Carlo evidence and estimates from Colombian and Chilean plant-level data show that our strategy performs well and is robust to deviations from the baseline setting.

Suggested Citation

  • Amit Gandhi & Salvador Navarro & David A. Rivers, 2020. "On the Identification of Gross Output Production Functions," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 2973-3016.
  • Handle: RePEc:ucp:jpolec:doi:10.1086/707736
    DOI: 10.1086/707736

    Download full text from publisher

    File URL:
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL:
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:jpolec:doi:10.1086/707736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.