IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.09666.html
   My bibliography  Save this paper

Estimating the Number of Components in Panel Data Finite Mixture Regression Models with an Application to Production Function Heterogeneity

Author

Listed:
  • Yu Hao
  • Hiroyuki Kasahara

Abstract

This paper develops statistical methods for determining the number of components in panel data finite mixture regression models with regression errors independently distributed as normal or more flexible normal mixtures. We analyze the asymptotic properties of the likelihood ratio test (LRT) and information criteria (AIC and BIC) for model selection in both conditionally independent and dynamic panel settings. Unlike cross-sectional normal mixture models, we show that panel data structures eliminate higher-order degeneracy problems while retaining issues of unbounded likelihood and infinite Fisher information. Addressing these challenges, we derive the asymptotic null distribution of the LRT statistic as the maximum of random variables and develop a sequential testing procedure for consistent selection of the number of components. Our theoretical analysis also establishes the consistency of BIC and the inconsistency of AIC. Empirical application to Chilean manufacturing data reveals significant heterogeneity in production technology, with substantial variation in output elasticities of material inputs and factor-augmented technological processes within narrowly defined industries, indicating plant-specific variation in production functions beyond Hicks-neutral technological differences. These findings contrast sharply with the standard practice of assuming a homogeneous production function and highlight the necessity of accounting for unobserved plant heterogeneity in empirical production analysis.

Suggested Citation

  • Yu Hao & Hiroyuki Kasahara, 2025. "Estimating the Number of Components in Panel Data Finite Mixture Regression Models with an Application to Production Function Heterogeneity," Papers 2506.09666, arXiv.org.
  • Handle: RePEc:arx:papers:2506.09666
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.09666
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.09666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.