IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/6385.html
   My bibliography  Save this paper

Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts

Author

Listed:
  • Stephen V. Cameron
  • James J. Heckman

Abstract

This paper examines an empirical regularity found in many societies: that family influences on the probability of transiting from one grade level to the next diminish at higher levels of education. We examine the statistical model used to establish the empirical regularity and the intuitive behavioral interpretation often used to rationalize it. We show that the implicit economic model assumes myopia. The intuitive interpretive model is identified only by imposing arbitrary distributional assumptions onto the data. We produce an alternative choice-theoretic model with fewer parameters that rationalizes the same data and is not based on arbitrary distributional assumptions.

Suggested Citation

  • Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:6385
    Note: CH LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w6385.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    2. Matzkin, Rosa L, 1991. "Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models," Econometrica, Econometric Society, vol. 59(5), pages 1315-1327, September.
    3. Geert Ridder, 1990. "The Non-Parametric Identification of Generalized Accelerated Failure-Time Models," Review of Economic Studies, Oxford University Press, vol. 57(2), pages 167-181.
    4. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    5. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    6. Comay, Yochanan & Melnik, A & Pollatschek, M A, 1973. "The Option Value of Education and the Optimal Path for Investment in Human Capital," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 421-435, June.
    7. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    8. Heckman, James J & Borjas, George J, 1980. "Does Unemployment Cause Future Unemployment? Definitions, Questions and Answers from a Continuous Time Model of Heterogeneity and State Dependence," Economica, London School of Economics and Political Science, vol. 47(187), pages 247-283, August.
    9. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    10. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    2. D'Haultfoeuille, Xavier & Maurel, Arnaud, 2009. "Inference on a Generalized Roy Model, with an Application to Schooling Decisions in France," IZA Discussion Papers 4606, Institute of Labor Economics (IZA).
    3. Le-Yu Chen, 2009. "Identification of structural dynamic discrete choice models," CeMMAP working papers CWP08/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    5. D’Haultfœuille, Xavier & Maurel, Arnaud, 2013. "Inference on an extended Roy model, with an application to schooling decisions in France," Journal of Econometrics, Elsevier, vol. 174(2), pages 95-106.
    6. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    8. Huang, J u-Chin & Nychka, Douglas W., 2000. "A nonparametric multiple choice method within the random utility framework," Journal of Econometrics, Elsevier, vol. 97(2), pages 207-225, August.
    9. Tushar Kanti Nandi, 2006. "Parametric and Semiparametric Estimation of the Adoption of Work Teams," Department of Economics University of Siena 484, Department of Economics, University of Siena.
    10. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    11. John F. Geweke & Michael P. Keane, 1997. "Mixture of normals probit models," Staff Report 237, Federal Reserve Bank of Minneapolis.
    12. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    13. Taber, Christopher R., 2000. "Semiparametric identification and heterogeneity in discrete choice dynamic programming models," Journal of Econometrics, Elsevier, vol. 96(2), pages 201-229, June.
    14. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    15. Tue Gørgens & Dean Robert Hyslop, 2018. "The Specification of Dynamic Discrete-Time Two-State Panel Data Models," Econometrics, MDPI, Open Access Journal, vol. 7(1), pages 1-16, December.
    16. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    17. McLaughlin, Kenneth J & Bils, Mark, 2001. "Interindustry Mobility and the Cyclical Upgrading of Labor," Journal of Labor Economics, University of Chicago Press, vol. 19(1), pages 94-135, January.
    18. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    19. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    20. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2003. "Measuring Heterogeneity in the Returns to Education in Norway Using Educational Reforms," IZA Discussion Papers 815, Institute of Labor Economics (IZA).

    More about this item

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • I28 - Health, Education, and Welfare - - Education - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:6385. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.