IDEAS home Printed from https://ideas.repec.org/p/toh/tupdaa/38.html

Identification and Estimation of Production Function with Unobserved Heterogeneity

Author

Listed:
  • Hiroyuki Kasahara
  • Paul Schrimpf
  • CMichio Suzuki

Abstract

This paper examines the nonparametric identifiability of production functions,considering firm heterogeneity beyond Hicks-neutral technology terms. We propose a finite mixture model to account for unobserved heterogeneity in production technology and productivity growth processes. Our analysis demonstrates that the production function for each latent type can be nonparametrically identified using four periods of panel data, relying on assumptions similar to those employed in existing literature on production function and panel data identification. By analyzing Japanese plant level panel data, we uncover significant disparities in estimated input elasticities and productivity growth processes among latent types within narrowly defined industries. We further show that neglecting unobserved heterogeneity in input elasticities may lead to substantial and systematic bias in the estimation of productivity growth.

Suggested Citation

  • Hiroyuki Kasahara & Paul Schrimpf & CMichio Suzuki, 2023. "Identification and Estimation of Production Function with Unobserved Heterogeneity," TUPD Discussion Papers 38, Graduate School of Economics and Management, Tohoku University.
  • Handle: RePEc:toh:tupdaa:38
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10097/00137216
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malein, Viktor (Малеин, Виктор) & Ponomarev, Yuriy (Пономарев, Юрий), 2019. "Analysis of Impact of New Technologies in Metallurgy on the Industry Production Function and Total Factor Productivity [Совокупная Факторная Производительность В Черной Металлургии: Влияние Новых Т," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 132-151, June.
    2. Ryo Okui & Takahide Yanagi, 2020. "Kernel estimation for panel data with heterogeneous dynamics," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 156-175.
    3. Tong Li & Yuya Sasaki, 2017. "Constructive Identification of Heterogeneous Elasticities in the Cobb-Douglas Production Function," Papers 1711.10031, arXiv.org.
    4. Michele Battisti & Valentino Dardanoni & Stefano Demichelis, 2024. "Inter-firm Heterogeneity in Production," Papers 2411.15980, arXiv.org.
    5. Li, Tong & Sasaki, Yuya, 2024. "Identification of heterogeneous elasticities in gross-output production functions," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Hien Thu Pham & Nhan Buu Phan & Shino Takayama, 2020. "Productivity, Efficiency and Firm Size Distribution: Evidence from Vietnam," Discussion Papers Series 617, School of Economics, University of Queensland, Australia.
    7. Ming Li, 2021. "Identification and Estimation in a Time-Varying Endogenous Random Coefficient Panel Data Model," Papers 2110.00982, arXiv.org, revised Nov 2024.
    8. Hiroyuki KASAHARA & Mitsukuni NISHIDA & Michio SUZUKI, 2017. "Decomposition of Aggregate Productivity Growth with Unobserved Heterogeneity," Discussion papers 17083, Research Institute of Economy, Trade and Industry (RIETI).
    9. Emannuel Dhyne & Joep Konings & Joep Konings & Stijn Vanormelingen,, 2018. "IT and productivity: A firm level analysis," Working Paper Research 346, National Bank of Belgium.
    10. Nhan Buu Phany & Shino Takayamaz, 2020. "Analyses of Corruption and Productivity with Empirical Study in Vietnam," Discussion Papers Series 628, School of Economics, University of Queensland, Australia.
    11. Konings, Jozef & Dhyne, Emmanuel & Van den bosch, Jeroen & ,, 2018. "The Return on Information Technology: Who Benefits Most?," CEPR Discussion Papers 13246, C.E.P.R. Discussion Papers.
    12. Grieco, Paul & Pinkse, Joris & Slade, Margaret, 2025. "Corrigendum to “Brewed in North America: Mergers, marginal costs, and efficiency” [International Journal of Industrial Organization 59 (2018) 24–65]," International Journal of Industrial Organization, Elsevier, vol. 103(PB).
    13. Xu Cheng & Frank Schorfheide & Peng Shao, 2023. "Clustering for Multi-Dimensional Heterogeneity with an Application to Production Function Estimation," PIER Working Paper Archive 23-016, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:toh:tupdaa:38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tohoku University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fetohjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.