IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2017cf1044.html
   My bibliography  Save this paper

Testing the Order of Multivariate Normal Mixture Models

Author

Listed:
  • Hiroyuki Kasahara

    (Vancouver School of Economics, University of British Columbia)

  • Katsumi Shimotsu

    (Faculty of Economics, The University of Tokyo)

Abstract

Testing the number of components in multivariate normal mixture models is a long-standing challenge. This paper develops a likelihood-based test of the null hypothesis of M 0 components against the alternative hypothesis of M 0 + 1 components. We derive a local quadratic approximation of the likelihood ratio statistic in terms of the polynomials of the parameters. Based on this quadratic approximation, we propose an EM test of the null hypothesis of M 0 components against the alternative hypothesis of M 0 + 1 components, and derive the asymptotic distribution of the proposed test statistic. The simulations show that the proposed test has good finite sample size and power properties.

Suggested Citation

  • Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Testing the Order of Multivariate Normal Mixture Models," CIRJE F-Series CIRJE-F-1044, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2017cf1044
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2017/2017cf1044.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jiahua Chen & Pengfei Li & Yuejiao Fu, 2012. "Inference on the Order of a Normal Mixture," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1096-1105, September.
    2. Lemdani, Mohamed & Pons, Odile, 1997. "Likelihood ratio tests for genetic linkage," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 15-22, April.
    3. P. Li & J. Chen & P. Marriott, 2009. "Non-finite Fisher information and homogeneity: an EM approach," Biometrika, Biometrika Trust, vol. 96(2), pages 411-426.
    4. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2001. "A modified likelihood ratio test for homogeneity in finite mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 19-29.
    5. Hiroyuki Kasahara & Katsumi Shimotsu, 2015. "Testing the Number of Components in Normal Mixture Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1632-1645, December.
    6. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2004. "Testing for a finite mixture model with two components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 95-115, February.
    7. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    8. Li, Pengfei & Chen, Jiahua, 2010. "Testing the Order of a Finite Mixture," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1084-1092.
    9. Hong‐Tu Zhu & Heping Zhang, 2004. "Hypothesis testing in mixture regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 3-16, February.
    10. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    2. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasahara Hiroyuki & Shimotsu Katsumi, 2012. "Testing the Number of Components in Finite Mixture Models," Global COE Hi-Stat Discussion Paper Series gd12-259, Institute of Economic Research, Hitotsubashi University.
    2. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.
    3. Wong, Tony S.T. & Lam, Kwok Fai & Zhao, Victoria X., 2018. "Asymptotic null distribution of the modified likelihood ratio test for homogeneity in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 248-257.
    4. Wichitchan, Supawadee & Yao, Weixin & Yang, Guangren, 2019. "Hypothesis testing for finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 180-189.
    5. Yang Ning & Yong Chen, 2015. "A Class of Pseudolikelihood Ratio Tests for Homogeneity in Exponential Tilt Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 504-517, June.
    6. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    7. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    8. Chuan Hong & Yang Ning & Shuang Wang & Hao Wu & Raymond J. Carroll & Yong Chen, 2017. "PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1393-1404, October.
    9. Bagkavos, Dimitrios & Patil, Prakash N., 2023. "Goodness-of-fit testing for normal mixture densities," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    10. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers CWP39/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
    12. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    13. Alexander D. Stead & Phill Wheat & William H. Greene, 2023. "On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model," Journal of Productivity Analysis, Springer, vol. 60(1), pages 37-48, August.
    14. Charnigo, Richard & Fan, Qian & Bittel, Douglas & Dai, Hongying, 2013. "Testing unilateral versus bilateral normal contamination," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 163-167.
    15. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers 39/17, Institute for Fiscal Studies.
    16. Christian Ritz, 2013. "Penalized likelihood ratio tests for repeated measurement models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 534-547, September.
    17. Dannemann, Jörn & Holzmann, Hajo, 2010. "Testing for two components in a switching regression model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1592-1604, June.
    18. Zhu, Hongtu & Zhang, Heping, 2006. "Asymptotics for estimation and testing procedures under loss of identifiability," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 19-45, January.
    19. Andrew Sweeting, 2009. "The strategic timing incentives of commercial radio stations: An empirical analysis using multiple equilibria," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 710-742, December.
    20. Hoshino Tadao & Yanagi Takahide, 2022. "Estimating marginal treatment effects under unobserved group heterogeneity," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2017cf1044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.