IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i6p1592-1604.html
   My bibliography  Save this article

Testing for two components in a switching regression model

Author

Listed:
  • Dannemann, Jörn
  • Holzmann, Hajo

Abstract

Switching regression models form a suitable model class for regression problems with unobserved heterogeneity. A basic issue encountered in applications of switching regression models is to choose the number of states of the switching regime. Based on the modified likelihood ratio test (LRT) statistic a test for two against more states of the regime is proposed, and its asymptotic distribution is derived in the case when there is a single switching parameter. Further, it is shown that the asymptotic distribution of the test remains unchanged if the regime is Markov dependent. A simulation study illustrates the finite-sample behavior of the test. Finally, the methodology is applied to the data of a dental health trial. In this case the model selection criteria AIC and BIC favor distinct binomial regression models with switching intercepts (AIC three states, BIC two states). The modified LRT allows us to reject the null hypothesis of two states in favor of three states.

Suggested Citation

  • Dannemann, Jörn & Holzmann, Hajo, 2010. "Testing for two components in a switching regression model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1592-1604, June.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:6:p:1592-1604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00024-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naik, Prasad A. & Shi, Peide & Tsai, Chih-Ling, 2007. "Extending the Akaike Information Criterion to Mixture Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 244-254, March.
    2. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    3. Bohning, Dankmar & Seidel, Wilfried & Alfo, Macro & Garel, Bernard & Patilea, Valentin & Walther, Gunther, 2007. "Advances in Mixture Models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5205-5210, July.
    4. Bettina Grün & Friedrich Leisch, 2008. "Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 225-247, November.
    5. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    6. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2004. "Testing for a finite mixture model with two components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 95-115, February.
    7. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2001. "A modified likelihood ratio test for homogeneity in finite mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 19-29.
    8. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    9. Hong‐Tu Zhu & Heping Zhang, 2004. "Hypothesis testing in mixture regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 3-16, February.
    10. Zhang H. & Feng R. & Zhu H., 2003. "A Latent Variable Model of Segregation Analysis for Ordinal Traits," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1023-1034, January.
    11. Chen, Jiahua & Khalili, Abbas, 2009. "Order Selection in Finite Mixture Models With a Nonsmooth Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 187-196.
    12. Peiming Wang & Martin Puterman, 1999. "Markov Poisson regression models for discrete time series. Part 1: Methodology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(7), pages 855-869.
    13. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Billio, Monica & Getmansky, Mila & Pelizzon, Loriana, 2012. "Dynamic risk exposures in hedge funds," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3517-3532.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hongtu & Zhang, Heping, 2006. "Asymptotics for estimation and testing procedures under loss of identifiability," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 19-45, January.
    2. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    3. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Testing the Order of Multivariate Normal Mixture Models," CIRJE F-Series CIRJE-F-1044, CIRJE, Faculty of Economics, University of Tokyo.
    4. Yang Ning & Yong Chen, 2015. "A Class of Pseudolikelihood Ratio Tests for Homogeneity in Exponential Tilt Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 504-517, June.
    5. Georgiev, Iliyan, 2010. "Model-based asymptotic inference on the effect of infrequent large shocks on cointegrated variables," Journal of Econometrics, Elsevier, vol. 158(1), pages 37-50, September.
    6. Andrew Sweeting, 2009. "The strategic timing incentives of commercial radio stations: An empirical analysis using multiple equilibria," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 710-742, December.
    7. Alexander D. Stead & Phill Wheat & William H. Greene, 2023. "On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model," Journal of Productivity Analysis, Springer, vol. 60(1), pages 37-48, August.
    8. Hoshino Tadao & Yanagi Takahide, 2022. "Estimating marginal treatment effects under unobserved group heterogeneity," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.
    9. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    10. Djeutem, Edouard & Dunbar, Geoffrey R., 2022. "Uncovered return parity: Equity returns and currency returns," Journal of International Money and Finance, Elsevier, vol. 128(C).
    11. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    12. Lu, Zeng-Hua, 2009. "Covariate selection in mixture models with the censored response variable," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2710-2723, May.
    13. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    14. Wong, Tony S.T. & Lam, Kwok Fai & Zhao, Victoria X., 2018. "Asymptotic null distribution of the modified likelihood ratio test for homogeneity in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 248-257.
    15. Kasahara Hiroyuki & Shimotsu Katsumi, 2012. "Testing the Number of Components in Finite Mixture Models," Global COE Hi-Stat Discussion Paper Series gd12-259, Institute of Economic Research, Hitotsubashi University.
    16. Hiroyuki Kasahara & Tatsuyoshi Okimoto & Katsumi Shimotsu, 2014. "Modified Quasi-Likelihood Ratio Test for Regime Switching," The Japanese Economic Review, Japanese Economic Association, vol. 65(1), pages 25-41, March.
    17. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.
    18. Hajo Holzmann & Sebastian Vollmer & Julian Weisbrod, 2007. "Twin Peaks or Three Components? - Analyzing the World\'s Cross-Country Distribution of Income," Ibero America Institute for Econ. Research (IAI) Discussion Papers 162, Ibero-America Institute for Economic Research.
    19. Chuan Hong & Yang Ning & Shuang Wang & Hao Wu & Raymond J. Carroll & Yong Chen, 2017. "PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1393-1404, October.
    20. Dalei Yu, 2016. "Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1214-1235, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:6:p:1592-1604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.