IDEAS home Printed from https://ideas.repec.org/p/lsu/lsuwpp/2018-03.html
   My bibliography  Save this paper

Identification and estimation in panel models with overspecified number of groups

Author

Listed:
  • Ruiqi Liu
  • Anton Schick
  • Zuofeng Shang
  • Yonghui Zhang
  • Qiankun Zhou

    ()

Abstract

In this paper, we provide a simple approach to identify and estimate group structure in panel models by adapting the M-estimation method. We consider both linear and nonlinear panel models where the regression coefficients are heterogeneous across groups but homogeneous within a group and the group membership is unknown to researchers. The main result of the paper is that under certain assumptions, our approach is able to provide uniformly consistent group parameter estimator as long as the number of groups used in estimation is not smaller than the true number of groups. We also show that, with probability approaching one, our method can partition some true groups into further subgroups, but cannot mix individuals from different groups. When the true number of groups is used in estimation, all the individuals can be categorized correctly with probability approaching one, and we establish the limiting distribution for the estimates of the group parameters. In addition, we provide an information criterion to choose the number of group and established its consistency under some mild conditions. Monte Carlo simulations are conducted to examine the finite sample performance of our proposed method. Findings in the simulation confirm our theoretical results in the paper. Application to labor force participation also highlights the necessity to take into account of individual heterogeneity and group heterogeneity.

Suggested Citation

  • Ruiqi Liu & Anton Schick & Zuofeng Shang & Yonghui Zhang & Qiankun Zhou, 2018. "Identification and estimation in panel models with overspecified number of groups," Departmental Working Papers 2018-03, Department of Economics, Louisiana State University.
  • Handle: RePEc:lsu:lsuwpp:2018-03
    as

    Download full text from publisher

    File URL: https://www.lsu.edu/business/economics/files/workingpapers/pap18_03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasilis Sarafidis & Neville Weber, 2015. "A Partially Heterogeneous Framework for Analyzing Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 274-296, April.
    2. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    3. Lee, Yoonseok & Phillips, Peter C.B., 2015. "Model selection in the presence of incidental parameters," Journal of Econometrics, Elsevier, vol. 188(2), pages 474-489.
    4. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    5. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    6. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    7. Lee, Kevin & Pesaran, M Hashem & Smith, Ron, 1997. "Growth and Convergence in Multi-country Empirical Stochastic Solow Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(4), pages 357-392, July-Aug..
    8. Hahn, Jinyong & Moon, Hyungsik Roger, 2010. "Panel Data Models With Finite Number Of Multiple Equilibria," Econometric Theory, Cambridge University Press, vol. 26(3), pages 863-881, June.
    9. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    10. Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women," Econometrica, Econometric Society, vol. 67(6), pages 1255-1294, November.
    11. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    12. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    2. Max Cytrynbaum, 2020. "Blocked Clusterwise Regression," Papers 2001.11130, arXiv.org.
    3. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    4. Tadao Hoshino, 2020. "A Pairwise Strategic Network Formation Model with Group Heterogeneity: With an Application to International Travel," Papers 2012.14886, arXiv.org, revised Feb 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    2. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    3. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    4. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    5. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    6. L. Hospido, 2012. "Modelling heterogeneity and dynamics in the volatility of individual wages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 386-414, April.
    7. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    8. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    9. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    10. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    11. Hugo Kruiniger, 2021. "Root-n-consistent Conditional ML estimation of dynamic panel logit models with fixed effects," Papers 2103.04973, arXiv.org, revised Mar 2021.
    12. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    13. Nibbering, D. & Paap, R., 2019. "Panel Forecasting with Asymmetric Grouping," Econometric Institute Research Papers EI-2019-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    15. Victor Chernozhukov & Ivan Fernandez-Val & Jinyong Hahn & Whitney K. Newey, 2008. "Identification and estimation of marginal effects in nonlinear panel models," CeMMAP working papers CWP25/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Geert Dhaene & Koen Jochmans, 2013. "Likelihood inference in an Autoregression with fixed effects," Sciences Po publications 2013-07, Sciences Po.
    17. Dhaene, Geert & Sun, Yutao, 2021. "Second-order corrected likelihood for nonlinear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 220(2), pages 227-252.
    18. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    19. Chen, Mingli, 2016. "Estimation of Nonlinear Panel Models with Multiple Unobserved Effects," Economic Research Papers 269326, University of Warwick - Department of Economics.
    20. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lsu:lsuwpp:2018-03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/delsuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.