IDEAS home Printed from https://ideas.repec.org/p/ris/smuesw/2020_007.html

Nonstationary Panel Models with Latent Group Structures and Cross-Section Dependence

Author

Listed:
  • Wenxin Huang

    (Shanghai Jiao Tong University)

  • Sainan Jin

    (School of Economics, Singapore Management University)

  • Peter C.B. Phillips

    (Yale University)

  • Liangjun Su

    (School of Economics, Singapore Management University)

Abstract

This paper proposes a novel Lasso-based approach to handle unobserved parameter heterogeneity and cross-section dependence in nonstationary panel models. In particular, a penalized principal component (PPC) method is developed to estimate group-specific long-run relationships and unobserved common factors and jointly to identify the unknown group membership. The PPC estimators are shown to be consistent under weakly dependent innovation processes. But they suffer an asymptotically non-negligible bias from correlations between the nonstationary regressors and unobserved stationary common factors and/or the equation errors. To remedy these shortcomings we provide three bias-correction procedures under which the estimators are re-centered about zero as both dimensions (N and T) of the panel tend to infinity. We establish a mixed normal limit theory for the estimators of the group-specific long-run coefficients, which permits inference using standard test statistics. Simulations suggest the good finite sample performance of the proposed method. An empirical application applies the methodology to study international R&D spillovers and the results offer a convincing explanation for the growth convergence puzzle through the heterogeneous impact of R&D spillovers.

Suggested Citation

  • Wenxin Huang & Sainan Jin & Peter C.B. Phillips & Liangjun Su, 2020. "Nonstationary Panel Models with Latent Group Structures and Cross-Section Dependence," Economics and Statistics Working Papers 7-2020, Singapore Management University, School of Economics.
  • Handle: RePEc:ris:smuesw:2020_007
    as

    Download full text from publisher

    File URL: https://ink.library.smu.edu.sg/soe_research/2313/
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Bin & Su, Liangjun & Westerlund, Joakim & Yang, Yanrong, 2025. "Interactive Effects Panel Data Models With General Factors And Regressors," Econometric Theory, Cambridge University Press, vol. 41(2), pages 472-488, April.
    2. Yanbo Liu & Peter C. B. Phillips & Jun Yu, 2023. "A Panel Clustering Approach To Analyzing Bubble Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1347-1395, November.
    3. Saptorshee Kanto Chakraborty & Antoine Mandel, 2024. "Understanding EU regional macroeconomic tipping points using panel threshold technique," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-30, June.
    4. Jiti Gao & Bin Peng & Yayi Yan, 2022. "Nonparametric Estimation and Testing for Time-Varying VAR Models," Monash Econometrics and Business Statistics Working Papers 3/22, Monash University, Department of Econometrics and Business Statistics.
    5. Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2025. "Panel Data Estimation and Inference: Homogeneity versus Heterogeneity," Monash Econometrics and Business Statistics Working Papers 2/25, Monash University, Department of Econometrics and Business Statistics.
    6. Gao, J. & Linton, O. & Peng, B., 2022. "A Nonparametric Panel Model for Climate Data with Seasonal and Spatial Variation," Janeway Institute Working Papers 2215, Faculty of Economics, University of Cambridge.
    7. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
    8. Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
    9. Dong, Yingjie & Huang, Wenxin & Tse, Yiu-Kuen, 2023. "Price comovement and market segmentation of Chinese A- and H-shares: Evidence from a panel latent-factor model," Journal of International Money and Finance, Elsevier, vol. 131(C).
    10. Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023. "Binary response models for heterogeneous panel data with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
    11. Guohua Feng & Jiti Gao & Bin Peng, 2022. "Multi-Level Panel Data Models: Estimation and Empirical Analysis," Monash Econometrics and Business Statistics Working Papers 4/22, Monash University, Department of Econometrics and Business Statistics.
    12. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    13. Su, Liangjun & Wang, Wuyi & Xu, Xingbai, 2023. "Identifying latent group structures in spatial dynamic panels," Journal of Econometrics, Elsevier, vol. 235(2), pages 1955-1980.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • F43 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Economic Growth of Open Economies
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:smuesw:2020_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lovein Teo (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.