IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v39y2021i2p575-588.html
   My bibliography  Save this article

Copula-Based Random Effects Models for Clustered Data

Author

Listed:
  • Santiago Pereda-Fernández

Abstract

In a binary choice panel data framework, probabilities of the outcomes of several individuals depend on the correlation of the unobserved heterogeneity. I propose a random effects estimator that models the correlation of the unobserved heterogeneity among individuals in the same cluster using a copula. I discuss the asymptotic efficiency of the estimator relative to standard random effects estimators, and to choose the copula I propose a specification test. The implementation of the estimator requires the numerical approximation of high-dimensional integrals, for which I propose an algorithm that works for Archimedean copulas that does not suffer from the curse of dimensionality. This method is illustrated with an application of labor supply in married couples, finding that about one half of the difference in probability of a woman being employed when her husband is also employed, relative to those whose husband is unemployed, is explained by correlation in the unobservables. Supplementary materials for this article are available online.

Suggested Citation

  • Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
  • Handle: RePEc:taf:jnlbes:v:39:y:2021:i:2:p:575-588
    DOI: 10.1080/07350015.2019.1688665
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2019.1688665
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2019.1688665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    3. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    4. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    5. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    6. Schlenker, Eva, 2013. "The Labour Supply of Women in STEM," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79981, Verein für Socialpolitik / German Economic Association.
    7. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    8. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    9. Myoung-jae Lee, 1999. "A Root-N Consistent Semiparametric Estimator for Related-Effect Binary Response Panel Data," Econometrica, Econometric Society, vol. 67(2), pages 427-434, March.
    10. Eva Schlenker, 2015. "The labour supply of women in STEM," IZA Journal of European Labor Studies, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 4(1), pages 1-17, December.
    11. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    12. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    13. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    14. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    15. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    16. Iván Fernández‐Val & Joonhwah Lee, 2013. "Panel data models with nonadditive unobserved heterogeneity: Estimation and inference," Quantitative Economics, Econometric Society, vol. 4(3), pages 453-481, November.
    17. Bester, C. Alan & Hansen, Christian B., 2016. "Grouped effects estimators in fixed effects models," Journal of Econometrics, Elsevier, vol. 190(1), pages 197-208.
    18. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    19. Michele Belloni & Rob Alessie, 2013. "Retirement Choices in Italy: What an Option Value Model Tells Us," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 499-527, August.
    20. Kaya, Ezgi, 2014. "Heterogeneous Couples, Household Interactions and Labor Supply Elasticities of Married Women," Cardiff Economics Working Papers E2014/18, Cardiff University, Cardiff Business School, Economics Section.
    21. Julia Bredtmann & Sebastian Otten & Christian Rulff, 2014. "Husband’s Unemployment and Wife’s Labor Supply – The Added Worker Effect across Europe," Economics Working Papers 2014-13, Department of Economics and Business Economics, Aarhus University.
    22. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    23. Kerwin Charles & Erik Hurst & Alexandra Killewald, 2013. "Marital Sorting and Parental Wealth," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 51-70, February.
    24. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    25. Artem Prokhorov & Ulf Schepsmeier & Yajing Zhu, 2019. "Generalized information matrix tests for copulas," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1024-1054, October.
    26. Gustaf Bruze, 2011. "Marriage Choices of Movie Stars: Does Spouse's Education Matter?," Journal of Human Capital, University of Chicago Press, vol. 5(1), pages 1-28.
    27. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 42-55, August.
    28. Hanushek, Eric, 1971. "Teacher Characteristics and Gains in Student Achievement: Estimation Using Micro Data," American Economic Review, American Economic Association, vol. 61(2), pages 280-288, May.
    29. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    30. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    31. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    32. Breusch, Trevor & Qian, Hailong & Schmidt, Peter & Wyhowski, Donald, 1999. "Redundancy of moment conditions," Journal of Econometrics, Elsevier, vol. 91(1), pages 89-111, July.
    33. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    34. Xiaoxia Shi, 2015. "A nondegenerate Vuong test," Quantitative Economics, Econometric Society, vol. 6(1), pages 85-121, March.
    35. repec:zbw:rwirep:0484 is not listed on IDEAS
    36. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    37. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    38. Áureo de Paula, 2013. "Econometric Analysis of Games with Multiple Equilibria," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 107-131, May.
    39. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    40. Stéphane Bonhomme, 2012. "Functional Differencing," Econometrica, Econometric Society, vol. 80(4), pages 1337-1385, July.
    41. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    42. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    43. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    44. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    45. Manuel Arellano & Stèphane Bonhomme, 2011. "Nonlinear Panel Data Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 395-424, September.
    46. Kenneth L. Judd & Ben Skrainka, 2011. "High performance quadrature rules: how numerical integration affects a popular model of product differentiation," CeMMAP working papers CWP03/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    47. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    48. Martin Browning & Jesus Carro, 2006. "Heterogeneity and Microeconometrics Modelling," CAM Working Papers 2006-03, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    49. Antweiler, Werner, 2001. "Nested random effects estimation in unbalanced panel data," Journal of Econometrics, Elsevier, vol. 101(2), pages 295-313, April.
    50. G. S. Maddala & Lung-Fei Lee, 1976. "Recursive Models with Qualitative Endogenous Variables," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 525-545, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    2. Concetta Rondinelli & Roberta Zizza, 2020. "Spend today or spend tomorrow? The role of inflation expectations in consumer behaviour," Temi di discussione (Economic working papers) 1276, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    2. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    3. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    4. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    5. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    6. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    7. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    8. Gao, Yichen & Li, Cong & Liang, Zhongwen, 2015. "Binary response correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 188(2), pages 421-434.
    9. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    10. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    11. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    12. Laura Liu & Alexandre Poirier & Ji-Liang Shiu, 2021. "Identification and Estimation of Partial Effects in Nonlinear Semiparametric Panel Models," Papers 2105.12891, arXiv.org, revised Jul 2024.
    13. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2021. "Inference on semiparametric multinomial response models," Quantitative Economics, Econometric Society, vol. 12(3), pages 743-777, July.
    14. Irene Botosaru & Chris Muris, 2022. "Identification of time-varying counterfactual parameters in nonlinear panel models," Papers 2212.09193, arXiv.org, revised Nov 2023.
    15. Geert Dhaene & Martin Weidner, 2023. "Approximate Functional Differencing," Papers 2301.13736, arXiv.org, revised May 2023.
    16. Michael Lechner & Stefan Lollivier & Thierry Magnac, 2005. "Parametric Binary Choice Models," University of St. Gallen Department of Economics working paper series 2005 2005-23, Department of Economics, University of St. Gallen.
    17. Cavit Pakel & Martin Weidner, 2023. "Bounds on Average Effects in Discrete Choice Panel Data Models," Papers 2309.09299, arXiv.org, revised May 2024.
    18. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    19. Valentin Verdier, 2020. "Average treatment effects for stayers with correlated random coefficient models of panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 917-939, November.
    20. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:39:y:2021:i:2:p:575-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.