IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/12-25.html
   My bibliography  Save this paper

Moment restrictions for nonlinear panel data models with feedback

Author

Listed:
  • Stéphane Bonhomme
  • Kevin Dano
  • Bryan S. Graham

Abstract

Many panel data methods, while allowing for general dependence between covariates and time-invariant agent-specific heterogeneity, place strong a priori restrictions on feedback: how past outcomes, covariates, and heterogeneity map into future covariate levels. Ruling out feedback entirely, as often occurs in practice, is unattractive in many dynamic economic settings. We provide a general characterization of all feedback and heterogeneity robust (FHR) moment conditions for nonlinear panel data models and present constructive methods to derive feasible moment based estimators for specific models. We also use our moment characterization to compute semiparametric efficiency bounds, allowing for a quantification of the information loss associated with accommodating feedback, as well as providing insight into how to construct estimators with good efficiency properties in practice. Our results apply both to the finite dimensional parameter indexing the parametric part of the model as well as to estimands that involve averages over the distribution of unobserved heterogeneity. We illustrate our methods by providing a complete characterization of all FHR moment functions in the multi-spell mixed proportional hazards model. We compute efficient moment functions for both model parameters and average effects in this setting.

Suggested Citation

  • Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2025. "Moment restrictions for nonlinear panel data models with feedback," CeMMAP working papers 12/25, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:12/25
    DOI: 10.47004/wp.cem.2025.1225
    as

    Download full text from publisher

    File URL: https://cemmap.ac.uk/wp-content/uploads/2025/06/CWP1225-Moment-restrictions-for-nonlinear-panel-data-models-with-feedback.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.47004/wp.cem.2025.1225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Aguirregabiria & Jesus Carro, 2021. "Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models," Working Papers tecipa-701, University of Toronto, Department of Economics.
    2. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    3. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    4. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    5. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    6. Bryan S. Graham, 2011. "Efficiency Bounds for Missing Data Models With Semiparametric Restrictions," Econometrica, Econometric Society, vol. 79(2), pages 437-452, March.
    7. J. Heckman & B. Singer, 1984. "The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(2), pages 231-241.
    8. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    9. Hahn, Jinyong, 1997. "A Note on the Efficient Semiparametric Estimation of Some Exponential Panel Models," Econometric Theory, Cambridge University Press, vol. 13(4), pages 583-588, February.
    10. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    11. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    12. Gary Chamberlain, 2023. "Identification in dynamic binary choice models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 14(3), pages 247-251, December.
    13. St'ephane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a Binary Choice Panel Data Model with a Predetermined Covariate," Papers 2301.05733, arXiv.org, revised Jul 2023.
    14. Honore, Bo E. & Hu, Luojia, 2004. "Estimation of cross sectional and panel data censored regression models with endogeneity," Journal of Econometrics, Elsevier, vol. 122(2), pages 293-316, October.
    15. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    16. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    17. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    18. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    19. Wooldridge, Jeffrey M., 1997. "Multiplicative Panel Data Models Without the Strict Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 13(5), pages 667-678, October.
    20. Geert Ridder & Tiemen M. Woutersen, 2003. "The Singularity of the Information Matrix of the Mixed Proportional Hazard Model," Econometrica, Econometric Society, vol. 71(5), pages 1579-1589, September.
    21. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    22. Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a binary choice panel data model with a predetermined covariate," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 14(3), pages 315-351, December.
    23. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    24. Chamberlain, Gary, 2022. "Feedback in panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 4-20.
    25. Bonev, Petyo, 2020. "Nonparametric identification in nonseparable duration models with unobserved heterogeneity," Economics Working Paper Series 2005, University of St. Gallen, School of Economics and Political Science.
    26. Manuel Arellano & Stèphane Bonhomme, 2011. "Nonlinear Panel Data Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 395-424, September.
    27. Buchinsky, Moshe & Hahn, Jinyong & Kim, Kyoo il, 2010. "Semiparametric information bound of dynamic discrete choice models," Economics Letters, Elsevier, vol. 108(2), pages 109-112, August.
    28. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    29. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    30. Heckman, James J, 1991. "Identifying the Hand of the Past: Distinguishing State Dependence from Heterogeneity," American Economic Review, American Economic Association, vol. 81(2), pages 75-79, May.
    31. Jinyong Hahn, 1994. "The Efficiency Bound of the Mixed Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 607-629.
    32. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    33. Irene Botosaru & Isaac Loh & Chris Muris, 2024. "An Adversarial Approach to Identification," Papers 2411.04239, arXiv.org, revised Dec 2024.
    34. Bryan W. Brown & Whitney K. Newey, 1998. "Efficient Semiparametric Estimation of Expectations," Econometrica, Econometric Society, vol. 66(2), pages 453-464, March.
    35. Chamberlain, Gary, 1982. "The General Equivalence of Granger and Sims Causality," Econometrica, Econometric Society, vol. 50(3), pages 569-581, May.
    36. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    37. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    38. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    39. Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a Binary Choice Panel Data Model with a Predetermined Covariate," NBER Working Papers 31027, National Bureau of Economic Research, Inc.
    40. Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a binary choice panel data model with a predetermined covariate," CeMMAP working papers 17/23, Institute for Fiscal Studies.
    41. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    42. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    43. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    44. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    45. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    46. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 403-409.
    47. Chamberlain, Gary, 1992. "Sequential Moment Restrictions in Panel Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 20-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a binary choice panel data model with a predetermined covariate," CeMMAP working papers 17/23, Institute for Fiscal Studies.
    2. St'ephane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a Binary Choice Panel Data Model with a Predetermined Covariate," Papers 2301.05733, arXiv.org, revised Jul 2023.
    3. Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a binary choice panel data model with a predetermined covariate," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 14(3), pages 315-351, December.
    4. Cavit Pakel & Martin Weidner, 2023. "Bounds on Average Effects in Discrete Choice Panel Data Models," Papers 2309.09299, arXiv.org, revised May 2024.
    5. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    6. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    7. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
    8. Bo E. Honoré & Chris Muris & Martin Weidner, 2021. "Dynamic Ordered Panel Logit Models," Working Papers 2021-14, Princeton University. Economics Department..
    9. Geert Dhaene & Martin Weidner, 2023. "Approximate Functional Differencing," Papers 2301.13736, arXiv.org, revised May 2023.
    10. Kitazawa, Yoshitsugu, 2022. "Transformations and moment conditions for dynamic fixed effects logit models," Journal of Econometrics, Elsevier, vol. 229(2), pages 350-362.
    11. Chen, Xiaohong & Liao, Zhipeng, 2014. "Sieve M inference on irregular parameters," Journal of Econometrics, Elsevier, vol. 182(1), pages 70-86.
    12. Geert Dhaene & Martin Weidner, 2023. "Approximate functional differencing," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 14(3), pages 379-416, December.
    13. Sasaki, Yuya, 2015. "Heterogeneity and selection in dynamic panel data," Journal of Econometrics, Elsevier, vol. 188(1), pages 236-249.
    14. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    15. Yoshitsugu Kitazawa, 2013. "Exploration of dynamic fixed effects logit models from a traditional angle," Discussion Papers 60, Kyushu Sangyo University, Faculty of Economics.
    16. Gayle, Wayne-Roy, 2013. "Identification and N-consistent estimation of a nonlinear panel data model with correlated unobserved effects," Journal of Econometrics, Elsevier, vol. 175(2), pages 71-83.
    17. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    18. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    19. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    20. St'ephane Bonhomme & Martin Weidner, 2018. "Minimizing Sensitivity to Model Misspecification," Papers 1807.02161, arXiv.org, revised Oct 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:12/25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.