IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v19y2000i3p321-340.html
   My bibliography  Save this article

GMM Estimation with persistent panel data: an application to production functions

Author

Listed:
  • Richard Blundell
  • Stephen Bond

Abstract

This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.

Suggested Citation

  • Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
  • Handle: RePEc:taf:emetrv:v:19:y:2000:i:3:p:321-340
    DOI: 10.1080/07474930008800475
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930008800475
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930008800475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    2. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    6. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    7. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    2. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    3. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    4. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    5. Erik Biørn, 2002. "Handling the measurement error problem by means of panel data: Moment methods applied on firm data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B6-1, International Conferences on Panel Data.
    6. Coviello, Decio & Islam, Roumeen, 2006. "Does aid help improve economic institutions ?," Policy Research Working Paper Series 3990, The World Bank.
    7. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    8. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    9. Asongu, Simplice A. & Andrés, Antonio R., 2020. "Trajectories of knowledge economy in SSA and MENA countries," Technology in Society, Elsevier, vol. 63(C).
    10. Lee, Angela Y. & Aaker, Jennifer L., 2006. "A Monte Carlo Study of Growth Regressions," Research Papers 1836r1, Stanford University, Graduate School of Business.
    11. Florian Pelgrin & Arnaud Sylvain & Eric Heyer, 2003. "Durées d'utilisation des facteurs et fonction de production : une estimation par la méthode des moments généralisés en système," Working Papers hal-00972839, HAL.
    12. Michel Dumont, 2015. "Working Paper 05-15 - Evaluation of federal tax incentives for private R&D in Belgium: An update," Working Papers 1505, Federal Planning Bureau, Belgium.
    13. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    14. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    15. Erik Biørn, 2000. "Panel Data With Measurement Errors: Instrumental Variables And Gmm Procedures Combining Levels And Differences," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 391-424.
    16. Piyapong Jiwattanakulpaisarn & Robert B. Noland & Daniel J. Graham & John W. Polak, 2009. "Highway Infrastructure Investment And County Employment Growth: A Dynamic Panel Regression Analysis," Journal of Regional Science, Wiley Blackwell, vol. 49(2), pages 263-286, May.
    17. Kul B. Luintel & Mosahid Khan, 2009. "Heterogeneous ideas production and endogenous growth: an empirical investigation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 42(3), pages 1176-1205, August.
    18. de Mendonça, Helder Ferreira & Barcelos, Vívian Íris, 2015. "Securitization and credit risk: Empirical evidence from an emerging economy," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 12-28.
    19. Piyapong Jiwattanakulpaisarn & Robert B. Noland & Daniel J. Graham & John W. Polak, 2009. "Highway infrastructure and state‐level employment: A causal spatial analysis," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 133-159, March.
    20. Desiderio Romero-Jordán & Pablo del Río & Cristina Peñasco, 2014. "Household electricity demand in Spanish regions. Public policy implications," Working Papers 2014/24, Institut d'Economia de Barcelona (IEB).

    More about this item

    Keywords

    panel data; GMM; production functions;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:19:y:2000:i:3:p:321-340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.