IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v19y2000i3p321-340.html
   My bibliography  Save this article

GMM Estimation with persistent panel data: an application to production functions

Author

Listed:
  • Richard Blundell
  • Stephen Bond

Abstract

This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.

Suggested Citation

  • Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
  • Handle: RePEc:taf:emetrv:v:19:y:2000:i:3:p:321-340
    DOI: 10.1080/07474930008800475
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930008800475
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930008800475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
    2. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    3. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    6. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    7. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    8. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    2. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    3. Blundell, Richard & Bond, Stephen, 2023. "Reprint of: Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 234(S), pages 38-55.
    4. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    5. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    6. Coviello, Decio & Islam, Roumeen, 2006. "Does aid help improve economic institutions ?," Policy Research Working Paper Series 3990, The World Bank.
    7. Montes, Gabriel Caldas & da Cunha Lima, Luiza Leitão, 2018. "Effects of fiscal transparency on inflation and inflation expectations: Empirical evidence from developed and developing countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 26-37.
    8. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    9. Florian Pelgrin & Arnaud Sylvain & Eric Heyer, 2003. "Durées d'utilisation des facteurs et fonction de production : une estimation par la méthode des moments généralisés en système," Working Papers hal-00972839, HAL.
    10. Asongu, Simplice A. & Andrés, Antonio R., 2020. "Trajectories of knowledge economy in SSA and MENA countries," Technology in Society, Elsevier, vol. 63(C).
    11. Michel Dumont, 2015. "Working Paper 05-15 - Evaluation of federal tax incentives for private R&D in Belgium: An update," Working Papers 1505, Federal Planning Bureau, Belgium.
    12. Florian Pelgrin & Arnaud Sylvain & Eric Heyer, 2004. "Capital operating time and working time in the production function : an evaluation on a panel firms over the period 1989-2001," SciencePo Working papers Main hal-00972838, HAL.
    13. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    14. de Mendonça, Helder Ferreira & Galvão, Délio José Cordeiro & Loures, Renato Falci Villela, 2013. "Credit and bank opaqueness: How to avoid financial crises?," Economic Modelling, Elsevier, vol. 33(C), pages 605-612.
    15. Axel Dreher & Peter Nunnenkamp & Rainer Thiele, 2008. "Does Aid for Education Educate Children? Evidence from Panel Data," The World Bank Economic Review, World Bank, vol. 22(2), pages 291-314, April.
    16. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    17. Piyapong Jiwattanakulpaisarn & Robert B. Noland & Daniel J. Graham & John W. Polak, 2009. "Highway Infrastructure Investment And County Employment Growth: A Dynamic Panel Regression Analysis," Journal of Regional Science, Wiley Blackwell, vol. 49(2), pages 263-286, May.
    18. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    19. de Mendonça, Helder Ferreira & Barcelos, Vívian Íris, 2015. "Securitization and credit risk: Empirical evidence from an emerging economy," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 12-28.
    20. repec:spo:wpmain:info:hdl:2441/2041 is not listed on IDEAS
    21. de Mendonça, Helder Ferreira & Tiberto, Bruno Pires, 2024. "Are prudent monetary and fiscal policy drivers of FDI inflows?," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(1).

    More about this item

    Keywords

    panel data; GMM; production functions;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:19:y:2000:i:3:p:321-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.