IDEAS home Printed from https://ideas.repec.org/p/jhu/papers/557.html
   My bibliography  Save this paper

Identification and Estimation of Nonlinear Dynamic Panel Data Models with Unobserved Covariates

Author

Listed:
  • Ji-Liang Shiu
  • Yingyao Hu

Abstract

This paper considers nonparametric identification of nonlinear dynamic models for panel data with unobserved voariates. Including such unobserved covariates may control for both the individual-specific unobserved heterogeneity and the endogeneity of the explanatory variables. Without specifying the distribution of the initial condition with the unobserved variables, we show that the models are nonparametrically identified from three periods of data. The main identifying assumption requires the evolution of the observed covariates depends on the unobserved covariates but not on the lagged dependent variable. We also propose a sieve maximum likelihood estimator (MLE) and focus on two classes of nonlinear dynamic panel data models, i.e., dynamic discrete choice models and dynamic censored models. We present the asymptotic property of the sieve MLE and investigate the finite sample properties of these sieve-based estimator through a Monte Carlo study. An intertemporal female labor force participation model is estimated as an empirical illustration using a sample from the Panel Study of Income Dynamics (PSID).

Suggested Citation

  • Ji-Liang Shiu & Yingyao Hu, 2010. "Identification and Estimation of Nonlinear Dynamic Panel Data Models with Unobserved Covariates," Economics Working Paper Archive 557, The Johns Hopkins University,Department of Economics.
  • Handle: RePEc:jhu:papers:557
    as

    Download full text from publisher

    File URL: http://econ.jhu.edu/wp-content/uploads/pdf/papers/wp557.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luojia Hu, 2002. "Estimation of a Censored Dynamic Panel Data Model," Econometrica, Econometric Society, vol. 70(6), pages 2499-2517, November.
    2. Keane, Michael, 1993. "Simulation estimation for panel data models with limited dependent variables," MPRA Paper 53029, University Library of Munich, Germany.
    3. Victor Chernozhukov & Ivan Fernandez-Val & Jinyong Hahn & Whitney K. Newey, 2008. "Identification and estimation of marginal effects in nonlinear panel models," CeMMAP working papers CWP25/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. Fernández-Val, Iván, 2009. "Fixed effects estimation of structural parameters and marginal effects in panel probit models," Journal of Econometrics, Elsevier, vol. 150(1), pages 71-85, May.
    6. Timothy J. Halliday, 2008. "Heterogeneity, state dependence and health," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 499-516, November.
    7. Yingyao Hu & Ji-Liang Shiu, 2011. "Nonparametric Identification Using Instrumental Variables: Sufficient Conditions For Completeness," Economics Working Paper Archive 581, The Johns Hopkins University,Department of Economics.
    8. Heckman, James J & Willis, Robert J, 1977. "A Beta-logistic Model for the Analysis of Sequential Labor Force Participation by Married Women," Journal of Political Economy, University of Chicago Press, vol. 85(1), pages 27-58, February.
    9. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
    10. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    11. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    12. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    13. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    14. Chintagunta, Pradeep & Kyriazidou, Ekaterini & Perktold, Josef, 2001. "Panel data analysis of household brand choices," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 111-153, July.
    15. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    16. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    17. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    18. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76 Elsevier.
    19. Honore, Bo E., 1993. "Orthogonality conditions for Tobit models with fixed effects and lagged dependent variables," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 35-61, September.
    20. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, July.
    21. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441 Elsevier.
    22. Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women," Econometrica, Econometric Society, vol. 67(6), pages 1255-1294, November.
    23. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    24. Hahn, Jinyong, 2001. "The Information Bound Of A Dynamic Panel Logit Model With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 17(05), pages 913-932, October.
    25. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    26. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318 Elsevier.
    27. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    28. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    29. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    30. Paul Contoyannis & Andrew M. Jones & Nigel Rice, 2004. "Simulation-based inference in dynamic panel probit models: An application to health," Empirical Economics, Springer, vol. 29(1), pages 49-77, January.
    31. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    32. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    33. Honore, Bo E. & Hu, Luojia, 2004. "Estimation of cross sectional and panel data censored regression models with endogeneity," Journal of Econometrics, Elsevier, vol. 122(2), pages 293-316, October.
    34. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 225-238.
    35. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    36. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
    37. Gourieroux, Christian & Monfort, Alain, 1993. "Simulation-based inference : A survey with special reference to panel data models," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 5-33, September.
    38. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuke Matsuki, "undated". "A Distribution-Free Test of Monotonicity with an Application to Auctions," Working Papers e110, Tokyo Center for Economic Research.
    2. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    3. repec:eee:econom:v:200:y:2017:i:2:p:154-168 is not listed on IDEAS
    4. Shiu, Ji-Liang, 2014. "An alternative identification of nonlinear dynamic panel data models with unobserved covariates," Economics Letters, Elsevier, vol. 122(2), pages 338-342.
    5. repec:eee:econom:v:200:y:2017:i:1:p:48-58 is not listed on IDEAS
    6. Yingyao Hu, 2015. "Microeconomic models with latent variables: applications of measurement error models in empirical industrial organization and labor economics," CeMMAP working papers CWP03/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jhu:papers:557. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (None). General contact details of provider: http://edirc.repec.org/data/dejhuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.