IDEAS home Printed from https://ideas.repec.org/p/anc/wgretl/1.html
   My bibliography  Save this paper

DPB: Dynamic Panel Binary data models in Gretl

Author

Listed:
  • Riccardo Lucchetti

    (Universita' Politecnica delle Marche, Dipartimento di Scienze economiche e sociali)

  • Claudia Pigini

    (Universita' Politecnica delle Marche, Dipartimento di Scienze economiche e sociali)

Abstract

This paper presents the Gretl function package DPB for estimating dynamic binary models with panel data. The package contains routines for the estimation of the random-effects dynamic probit model proposed by Heckman (1981b) and its generalisation by Hyslop (1999) and Keane and Sauer (2009) to accommodate AR(1) disturbances. The fixed-effects estimator by Bartolucci and Nigro (2010) is also implemented. DPB is available on the Gretl function packages archive.

Suggested Citation

  • Riccardo Lucchetti & Claudia Pigini, 2015. "DPB: Dynamic Panel Binary data models in Gretl," gretl working papers 1, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali, revised 24 Apr 2015.
  • Handle: RePEc:anc:wgretl:1
    as

    Download full text from publisher

    File URL: http://docs.dises.univpm.it/web/quaderni/pdfgretl/gretl001.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rob Alessie & Stefan Hochguertel & Arthur van Soest, 2004. "Ownership of Stocks and Mutual Funds: A Panel Data Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 783-796, August.
    2. Andrew M. Jones & Nigel Rice & Paul Contoyannis, 2012. "The Dynamics of Health," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 2, Edward Elgar Publishing.
    3. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    4. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    5. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    6. Pigini, Claudia & Presbitero, Andrea F. & Zazzaro, Alberto, 2016. "State dependence in access to credit," Journal of Financial Stability, Elsevier, vol. 27(C), pages 17-34.
    7. Giulia Bettin & Riccardo Lucchetti, 2016. "Steady streams and sudden bursts: persistence patterns in remittance decisions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 29(1), pages 263-292, January.
    8. Bartolucci, Francesco & Nigro, Valentina, 2012. "Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data," Journal of Econometrics, Elsevier, vol. 170(1), pages 102-116.
    9. F. Bartolucci & R. Bellio & A. Salvan & N. Sartori, 2016. "Modified Profile Likelihood for Fixed-Effects Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1271-1289, August.
    10. Alfonso Miranda, 2007. "Dynamic probit models for panel data: A comparison of three methods of estimation," United Kingdom Stata Users' Group Meetings 2007 11, Stata Users Group.
    11. Lorenzo Cappellari & Stephen P. Jenkins, 2004. "Modelling low income transitions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 593-610.
    12. Giarda, Elena, 2013. "Persistency of financial distress amongst Italian households: Evidence from dynamic models for binary panel data," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3425-3434.
    13. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    14. Francesco Bartolucci & Valentina Nigro, 2010. "A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a √n-Consistent Conditional Estimator," Econometrica, Econometric Society, vol. 78(2), pages 719-733, March.
    15. Timothy J. Halliday, 2008. "Heterogeneity, state dependence and health," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 499-516, November.
    16. Pedro Albarran & Raquel Carrasco & Jesus M. Carro, 2019. "Estimation of Dynamic Nonlinear Random Effects Models with Unbalanced Panels," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(6), pages 1424-1441, December.
    17. Michael P. Keane & Robert M. Sauer, 2009. "Classification Error in Dynamic Discrete Choice Models: Implications for Female Labor Supply Behavior," Econometrica, Econometric Society, vol. 77(3), pages 975-991, May.
    18. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    19. Martin Biewen, 2009. "Measuring state dependence in individual poverty histories when there is feedback to employment status and household composition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1095-1116, November.
    20. Bartolucci, Francesco & Nigro, Valentina & Pigini, Claudia, 2013. "Testing for state dependence in binary panel data with individual covariates," MPRA Paper 48233, University Library of Munich, Germany.
    21. Mark B. Stewart, 2007. "The interrelated dynamics of unemployment and low-wage employment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 511-531.
    22. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    23. Brown, Sarah & Ghosh, Pulak & Taylor, Karl, 2014. "The existence and persistence of household financial hardship: A Bayesian multivariate dynamic logit framework," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 285-298.
    24. Hahn, Jinyong & Kuersteiner, Guido, 2011. "Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1152-1191, December.
    25. Giulia BETTIN & Riccardo LUCCHETTI, 2012. "Intertemporal remittance behaviour by immigrants in Germany," Working Papers 385, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    26. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    27. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 225-238.
    28. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    29. Paul Contoyannis & Andrew M. Jones & Nigel Rice, 2004. "Simulation-based inference in dynamic panel probit models: An application to health," Empirical Economics, Springer, vol. 29(1), pages 49-77, January.
    30. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    31. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    32. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    33. Alpaslan Akay, 2012. "Finite‐sample comparison of alternative methods for estimating dynamic panel data models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1189-1204, November.
    34. Sarah Brown & Pulak Ghosh & Karl Taylor, 2012. "The Existence and Persistence of Household Financial Hardship," Working Papers 2012022, The University of Sheffield, Department of Economics.
    35. Heckman, James J & Borjas, George J, 1980. "Does Unemployment Cause Future Unemployment? Definitions, Questions and Answers from a Continuous Time Model of Heterogeneity and State Dependence," Economica, London School of Economics and Political Science, vol. 47(187), pages 247-283, August.
    36. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    37. Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women," Econometrica, Econometric Society, vol. 67(6), pages 1255-1294, November.
    38. Mark Stewart, 2006. "Maximum simulated likelihood estimation of random-effects dynamic probit models with autocorrelated errors," Stata Journal, StataCorp LP, vol. 6(2), pages 256-272, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    2. Elena Giarda & Gloria Moroni, 2018. "The Degree of Poverty Persistence and the Role of Regional Disparities in Italy in Comparison with France, Spain and the UK," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(1), pages 163-202, February.
    3. Giulia Bettin & Riccardo Lucchetti, 2016. "Steady streams and sudden bursts: persistence patterns in remittance decisions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 29(1), pages 263-292, January.
    4. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    5. Schreiber, Sven & Beblo, Miriam, 2016. "Leisure and Housing Consumption after Retirement: New Evidence on the Life-Cycle Hypothesis," VfS Annual Conference 2016 (Augsburg): Demographic Change 145924, Verein für Socialpolitik / German Economic Association.
    6. Riccardo Lucchetti & Claudia Pigini, 2018. "Dynamic panel probit: finite-sample performance of alternative random-effects estimators," Working Papers 426, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Riccardo (Jack) Lucchetti & Claudia Pigini, 2020. "Choice of solutions to the initial-conditions problem in dynamic panel probit models," Working Papers 2020:27, Department of Economics, University of Venice "Ca' Foscari".
    8. Cucinelli, Doriana & Battista, Maria Luisa Di & Marchese, Malvina & Nieri, Laura, 2018. "Credit risk in European banks: The bright side of the internal ratings based approach," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 213-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    2. Francesco Bartolucci & Valentina Nigro & Claudia Pigini, 2018. "Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 61-88, January.
    3. Pigini, Claudia & Presbitero, Andrea F. & Zazzaro, Alberto, 2016. "State dependence in access to credit," Journal of Financial Stability, Elsevier, vol. 27(C), pages 17-34.
    4. Giulia Bettin & Riccardo Lucchetti, 2016. "Steady streams and sudden bursts: persistence patterns in remittance decisions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 29(1), pages 263-292, January.
    5. Manudeep Bhuller & Christian N. Brinch & Sebastian Königs, 2017. "Time Aggregation and State Dependence in Welfare Receipt," Economic Journal, Royal Economic Society, vol. 127(604), pages 1833-1873, September.
    6. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    7. Mark B. Stewart, 2007. "The interrelated dynamics of unemployment and low-wage employment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 511-531.
    8. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    9. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    10. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    11. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    12. Wiji Arulampalam & Mark B. Stewart, 2009. "Simplified Implementation of the Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 659-681, October.
    13. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    14. Elena Giarda & Gloria Moroni, 2018. "The Degree of Poverty Persistence and the Role of Regional Disparities in Italy in Comparison with France, Spain and the UK," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(1), pages 163-202, February.
    15. Fernández-Val, Iván, 2009. "Fixed effects estimation of structural parameters and marginal effects in panel probit models," Journal of Econometrics, Elsevier, vol. 150(1), pages 71-85, May.
    16. Sara Ayllón, 2015. "Youth Poverty, Employment, and Leaving the Parental Home in Europe," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(4), pages 651-676, December.
    17. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    18. Hernández-Quevedo, Cristina & Jones, Andrew M. & Rice, Nigel, 2008. "Persistence in health limitations: A European comparative analysis," Journal of Health Economics, Elsevier, vol. 27(6), pages 1472-1488, December.
    19. Prieto Suarez, Joaquin, 2021. "Poverty traps and affluence shields: modelling the persistence of income position in Chile," LSE Research Online Documents on Economics 110719, London School of Economics and Political Science, LSE Library.
    20. Picchio, Matteo & van Ours, Jan C., 2013. "Retaining through training even for older workers," Economics of Education Review, Elsevier, vol. 32(C), pages 29-48.

    More about this item

    Keywords

    Gretl function package; Random-Effects Dynamic Probit model; Quadratic Exponential model; Gauss-Hermite quadrature; simulated Maximum Likelihood; Conditional Maximum Likelihood;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anc:wgretl:1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/deancit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maurizio Mariotti (email available below). General contact details of provider: https://edirc.repec.org/data/deancit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.