IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/48233.html
   My bibliography  Save this paper

Testing for state dependence in binary panel data with individual covariates

Author

Listed:
  • Bartolucci, Francesco
  • Nigro, Valentina
  • Pigini, Claudia

Abstract

We propose a test for state dependence in binary panel data under the dynamic logit model with individual covariates. For this aim, we rely on a quadratic exponential model in which the association between the response variables is accounted for in a different way with respect to more standard formulations. The level of association is measured by a single parameter that may be estimated by a conditional maximum likelihood approach. Under the dynamic logit model, the conditional estimator of this parameter converges to zero when the hypothesis of absence of state dependence is true. This allows us to implement a Wald test for this hypothesis which may be very simply performed and attains the nominal significance level under any structure of the individual covariates. Through an extensive simulation study, we find that our test has good finite sample properties and it is more robust to the presence of (autocorrelated) covariates in the model specification in comparison with other existing testing procedures for state dependence. The test is illustrated by an application based on data coming from the Panel Study of Income Dynamics.

Suggested Citation

  • Bartolucci, Francesco & Nigro, Valentina & Pigini, Claudia, 2013. "Testing for state dependence in binary panel data with individual covariates," MPRA Paper 48233, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:48233
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/48233/1/MPRA_paper_48233.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Timothy Halliday, 2007. "Testing for State Dependence with Time-Variant Transition Probabilities," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 685-703.
    2. Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women," Econometrica, Econometric Society, vol. 67(6), pages 1255-1294, November.
    3. Francesco Bartolucci† & Valentina Nigro, 2007. "A dynamic model for binary panel data with unobserved heterogeneity admitting a Vn-consistent conditional estimator," CEIS Research Paper 97, Tor Vergata University, CEIS.
    4. Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
    5. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    6. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    7. Bartolucci, Francesco & Nigro, Valentina, 2012. "Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data," Journal of Econometrics, Elsevier, vol. 170(1), pages 102-116.
    8. Chamberlain, G., 1993. "Feedback in Panel Data Medels," Harvard Institute of Economic Research Working Papers 1656, Harvard - Institute of Economic Research.
    9. Hahn, Jinyong & Kuersteiner, Guido, 2011. "Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1152-1191, December.
    10. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:jss:jstsof:v:078:i07 is not listed on IDEAS
    2. repec:jss:jstsof:v:079:i08 is not listed on IDEAS
    3. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    4. Lucchetti, Riccardo & Pigini, Claudia, 2017. "DPB: Dynamic Panel Binary Data Models in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i08).

    More about this item

    Keywords

    conditional inference; dynamic logit model; quadratic exponential model; Wald test;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:48233. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.