IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A dynamic model for binary panel data with unobserved heterogeneity admitting a Vn-consistent conditional estimator

  • Francesco Bartolucci†

    ()

    (Dipartimento di Economia, Finanza e Statistica, Universit`a di Perugia.)

  • Valentina Nigro

    ()

    (Dipartimento di Studi Economico-Finanziari e Metodi Quantitativi, Universit`a di Roma “Tor Vergata”)

A model for binary panel data is introduced which allows for state dependence and unobserved heterogeneity beyond the effect of strictly exogenous covariates. The model is of quadratic exponential type and its structure closely resembles that of the dynamic logit model. An economic interpretation of its assumptions, based on expectation about future outcomes, is provided. The main advantage of the proposed model, with respect to the dynamic logit model, is that each individual-specific parameter for the unobserved heterogeneity may be eliminated by conditioning on the sum of the corresponding response variables. A conditional likelihood results which allows us to identify the structural parameters of the model with at least three observations (included an initial observation assumed to be exogenous), even in the presence of time dummies. A pn-consistent conditional estimator of these parameters also results which is very simple to compute. Its finite sample properties are studied by means of a simulation study. Extensions of the proposed approach are discussed with reference, in particular, to the case of more elaborated structures for the state dependence and to that of categorical response variables with more than two levels.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://www.ceistorvergata.it/repec/rpaper/No-97.pdf
Download Restriction: no

Paper provided by Tor Vergata University, CEIS in its series CEIS Research Paper with number 97.

as
in new window

Length: 25
Date of creation: 20 Feb 2007
Date of revision:
Handle: RePEc:rtv:ceisrp:97
Contact details of provider: Postal: CEIS - Centre for Economic and International Studies - Faculty of Economics - University of Rome "Tor Vergata" - Via Columbia, 2 00133 Roma
Phone: +390672595601
Fax: +39062020687
Web page: http://www.ceistorvergata.it
Email:


More information through EDIRC

Order Information: Postal: CEIS - Centre for Economic and International Studies - Faculty of Economics - University of Rome "Tor Vergata" - Via Columbia, 2 00133 Roma
Web: http://www.ceistorvergata.it Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-62, March.
  2. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296 Elsevier.
  3. Jinyong Hahn & Whitney Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers CWP17/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  4. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
  5. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, 05.
  6. Hahn, Jinyong & Kuersteiner, Guido, 2011. "Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1152-1191, December.
  7. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
  8. Thierry Magnac, 2004. "Panel Binary Variables and Sufficiency: Generalizing Conditional Logit," Econometrica, Econometric Society, vol. 72(6), pages 1859-1876, November.
  9. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:97. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Barbara Piazzi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.