IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Parametric Binary Choice Models

  • Lechner, Michael
  • Lollivier, Stefan
  • Magnac, Thierry

This paper discusses the estimation of binary choice panel data models. We begin with different versions of the static random effects model when the explanatory variables are strictly exogenous. Depending on the autocorrelation structure of the errors, different estimators are available and we detail their attractiveness in each situation by trading-off their efficiency and robustness with respect to misspecification. Then, we consider the static model when a time invariant unobservable variable is correlated with the time varying explanatory variables. The non-linearity of binary choice models makes it pretty hard to eliminate individual fixed effects in likelihood functions and moment conditions, because the usual differencing out that works for the linear model does not work here except in special cases. Imposing quite restrictive assumptions is the price to pay to estimate consistently parameters of dynamics for fixed and random effects, in other words cases when the explanatory variables include lagged endogenous variables or are weakly exogenous only.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://idei.fr/sites/default/files/medias/doc/wp/2006/parametric.pdf
File Function: Full text
Download Restriction: no

Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 398.

as
in new window

Length:
Date of creation: Nov 2005
Date of revision:
Publication status: Published in dans The Econometrics of Panel Data - Fundamentals and Recent Developments in Theory and Practice, sous la direction de Laszlo Matyas et Patrick Sevestre (3rd edition), Springer Verlag, Berlin, 2008.
Handle: RePEc:ide:wpaper:5512
Contact details of provider: Postal: Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE
Phone: +33 (0)5 61 12 85 89
Fax: + 33 (0)5 61 12 86 37
Web page: http://www.idei.fr/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jinyong Hahn & Whitney Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers CWP17/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  2. Tiemen Woutersen, 2002. "Robustness against Incidental Parameters," UWO Department of Economics Working Papers 20028, University of Western Ontario, Department of Economics.
  3. John F. Geweke & Michael P. Keane & David E. Runkle, 1994. "Statistical inference in the multinomial multiperiod probit model," Staff Report 177, Federal Reserve Bank of Minneapolis.
  4. Arellano, Manuel & Carrasco, Raquel, 2003. "Binary choice panel data models with predetermined variables," Journal of Econometrics, Elsevier, vol. 115(1), pages 125-157, July.
  5. Lee, L.F., 1994. "Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models--Some Monte Carlo Results," Papers 94-06, Michigan - Center for Research on Economic & Social Theory.
  6. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
  7. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  8. Joseph G. Altonji & Lewis M. Segal, 1994. "Small sample bias in GMM estimation of covariance structures," Working Paper Series, Macroeconomic Issues 94-8, Federal Reserve Bank of Chicago.
  9. Bo E. Honore & Arthur Lewbel, 2002. "Semiparametric Binary Choice Panel Data Models Without Strictly Exogeneous Regressors," Econometrica, Econometric Society, vol. 70(5), pages 2053-2063, September.
  10. Bertschek, Irene & Lechner, Michael, 1995. "Convenient Estimators for the Panel Probit Model," Discussion Papers 528, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
  11. Thierry Kamionka, 1998. "Simulated maximum likelihood estimation in transition models," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C129-C153.
  12. Myoung-jae Lee, 1999. "A Root-N Consistent Semiparametric Estimator for Related-Effect Binary Response Panel Data," Econometrica, Econometric Society, vol. 67(2), pages 427-434, March.
  13. Charlier, G.W.P. & Melenberg, B. & van Soest, A.H.O., 1995. "A smoothed maximum score estimator for the binary choice panel data model with an application to labour force participation," Other publications TiSEM 93782c09-3feb-455f-bf00-0, Tilburg University, School of Economics and Management.
  14. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
  15. Inkmann, Joachim, 2000. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," Journal of Econometrics, Elsevier, vol. 97(2), pages 227-259, August.
  16. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 27-28, January.
  17. Joshua D. Angrist, 2000. "Estimation of Limited-Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," NBER Technical Working Papers 0248, National Bureau of Economic Research, Inc.
  18. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
  19. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
  20. Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
  21. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 437-483, June.
  22. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
  23. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  24. Thierry Magnac, 2003. "Panel Binary Variables and Sufficiency: Generalizing Conditional Logit," Research Unit Working Papers 0308, Laboratoire d'Economie Appliquee, INRA.
  25. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-64, May.
  26. Gourieroux, Christian & Monfort, Alain, 1993. "Simulation-based inference : A survey with special reference to panel data models," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 5-33, September.
  27. Robinson, Peter M, 1982. "On the Asymptotic Properties of Estimators of Models Containing Limited Dependent Variables," Econometrica, Econometric Society, vol. 50(1), pages 27-41, January.
  28. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
  29. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
  30. repec:inr:wpaper:155465 is not listed on IDEAS
  31. Bo E. Honore, 2002. "Non-linear models with panel data," CeMMAP working papers CWP13/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  32. Lechner, Michael, 1995. "Some Specification Tests for Probit Models Estimated on Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 475-88, October.
  33. Lee, Lung-fei, 2000. "A numerically stable quadrature procedure for the one-factor random-component discrete choice model," Journal of Econometrics, Elsevier, vol. 95(1), pages 117-129, March.
  34. Mroz, Thomas A., 1999. "Discrete factor approximations in simultaneous equation models: Estimating the impact of a dummy endogenous variable on a continuous outcome," Journal of Econometrics, Elsevier, vol. 92(2), pages 233-274, October.
  35. Avery, Robert B & Hansen, Lars Peter & Hotz, V Joseph, 1983. "Multiperiod Probit Models and Orthogonality Condition Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 21-35, February.
  36. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-62, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:5512. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.