IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v2y2002i1p1-21.html
   My bibliography  Save this article

Reliable estimation of generalized linear mixed models using adaptive quadrature

Author

Listed:
  • Sophia Rabe-Hesketh

    (Institute of Psychiatry, King's College London)

  • Anders Skrondal

    (National Institute of Public Health, Oslo)

  • Andrew Pickles

    (University of Manchester)

Abstract

Generalized linear mixed models or multilevel regression models have become increasingly popular. Several methods have been proposed for estimating such models. However,to date there is no single method that can be assumed to work well in all circumstances in terms of both parameter recovery and computational efficiency. Stata's xt commands for two-level generalized linear mixed models (e.g., xtlogit) employ Gauss-Hermite quadrature to evaluate and maximize the marginal log likelihood. The method generally works very well, and often better than common contenders such as MQL and PQL but there are cases where quadrature performs poorly.Adaptive quadrature has been suggested to overcome these problems in the two-level case. We have recently implemented a multilevel version of this method in gllamm, a program that fits a large class of multilevel latent variable models including multilevel generalized linear mixed models. As far as we know, this is the Þrst time that adaptive quadrature has been proposed for multilevel models. We show that adaptive quadrature works well in problems where ordinary quadrature fails. Furthermore,even when ordinary quadrature works, adaptive quadrature is often computationally more efficient since it requires fewer quadrature points to achieve the same precision. Copyright 2002 by Stata Corporation.

Suggested Citation

  • Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
  • Handle: RePEc:tsj:stataj:v:2:y:2002:i:1:p:1-21
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/software/sj2-1/st0005/
    Download Restriction: no

    File URL: http://www.stata-journal.com/sjpdf.html?articlenum=st0005
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:2:y:2002:i:1:p:1-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum) or (Lisa Gilmore). General contact details of provider: http://www.stata-journal.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.